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I Introduction

Data-driven machine-learning techniques are
increasingly used for analyzing sensor data

« Trained models performing high accuracy
- Executed server-side

Sensing devices are empowered with high
computational capabilities

- Often underexploited CPU and memory

Sensor networks are following the Web-of-Things
paradigm
« Strong interaction style between heterogeneous devices
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I Machine Learning - Approaches

= Generative approach: separately model class
conditional densities and priors

p(x|Cg), p(C)
then evaluate posterior probabilities using Bayes’

theorem p(Colx) = p(x|Cr)p(Cp)
g >_; p(x|C;)p(C5)

= Discriminative approach: directly model posterior
probabilities p(Ci|x)
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I Machine Learning - Comparison

Generative model
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=»  New classes can be added without re-training
using all the data

= Training converges faster
= Need to compute likelihood for each class

posterior probabilities
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Very fast once trained
Training converges slower

Need to re-train with all the data when

adding/removing classes
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I Architectural Design - Objectives

= Perform machine-learning within the sensor network

= Reuse computational capacities of already installed
devices (sensors and actuators)

= Inherit and extend key properties of the Web
- Strong interaction style
« Independence regarding hard-/software platforms
« Scalable architecture

= Formalize the exchange of machine-learning models

= Extend the perception of things to virtual system
com
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I Architecture
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I Virtual Class

= Preloaded agent with runtime algorithm (HMM or GMM)
« Discovery by location and available capabilities

= Represents a single class
*  Output is the likelihood for the class (probability)

Deploying models in
JSON and binary

Virtual Class

Configuration

Class

Observable resource returning

the current probability
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I Virtual Sensor

= Represents a high-level sensor (non-physical)
- Extracts knowledge from multiple sensors of different nature
* Machine learning tasks abstraction level
- Reusable component for performing mashups (semantic description

of the sensor)
Virtual Sensor
Configuration ' Runtime
(Models deployment)! (Class management)

Entry point for deploying machine Distributes the classes on nearly
learning models located agents

Performs validation of the MalLeX Performs the decision making (class
input (JSON schema) with highest likelihood)
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I MaleX - Machine Learning Exchange Format

Inspired from PMML - Predictive Model Markup
Languages (no generative models)

Formalized as JSON schema

Description of general entities
* Location, dimensions, type of sensor

Description specific to HMM and GMM

« Algorithm type, normalisation, states, matrices (mu, sigma,
weights, transition)

Extensible to other kind of models
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N B Deployment

MalLeX
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Applications - Building Automation Mashup
I Editor

Create a new scenario

Create scenario Update and create

Create a sconario with the oxtamg and configured O R Update the existing devices list with a RDF Turtle fie.

Once updated, creating a scenario.

EEE e e {Devlﬂllfa |

OR

Discover and create

Update the existing devices st with the discover
option, Once updated, creating a scenario.

167 =

m Update devices and create new scenario
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Applications - Building Automation Mashup

I Editor

Scenario name Scenario description
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Applications - Building Automation Mashup

I Editor

Scenario name Scenario description
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I From devices to building automation

()

Sensors

BAME
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I Performance - Appliance recognition

Virtual Sensor: Raspberry Pi

Virtual Classes: 5x OpenPicus Flyport Wi-Fi PRO

Scalability Te Round-Trip Time Depending on the Operation Strategy
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_ Contributions

= Agent-based HMM and GMM virtual classes in C

« Deploy complex models (multidimensional matrices) on
constrained devices

= MaLeX - Machine Learning Exchange Format
- Schema describing generative algorithms

Embeddable into matlab to automatically export the
models in the right format

= BAME - Building Automation Mashup Editor

- Easily integrate new devices by relying on semantic
descriptions
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_ Conclusion and future works

= Conclusion

« Sensing devices are powerful enough for running HMM

 Reusable architecture based on RESTful APIs and
semantics

« Building automation machine learning mashups feasible

* No dedicated infrastructure is required for data-driven
analysis

= Future works

« Finding efficient training algorithms segmenting the
training data

« Representing training algorithms as Web agents with
semantic descriptions

 Distributing training agents within the sensor network
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I Questions
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