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ABSTRACT 
Any upcoming industrial revolution will rely on the ability to 
harness software as the nervous system of future production 
environments. This paper proposes an app ecosystem as key 
enabler of industry digitization and argues for the need of 
semantic web technologies as primary enablers for their 
interoperability. We shortly discuss how we envision the 
emergence of semantically annotated apps on the manufacturing 
shop floor. Subsequently, we demonstrate how a loosely coupled 
mashup of apps can easily form a full stack internet of things 
solution that covers sensor data from its origin toward its 
visualization in a web browser. 

CCS Concepts 
• Information systems�Mashups • Information 
systems�Semantic web description languages • Software and 
its engineering�Distributed systems organizing principles 
• Information systems�Web services 
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1. INTRODUCTION 
Modern manufacturing relies on continuous productivity improve-
ments to maintain profitability. With an increasingly important 
role, software is a key enabler for efficiency.  

However, interoperability between existing systems and the 
addition of new software prove to be challenging and expensive 
tasks due to technical and sometimes human factors. These 
impediments turn the shop floor IT into a rigid siloed landscape. 
Software needs to become more flexible in order to adapt to 
business needs and more transparent in order to increase a feeling 
of control for the software operators. Ideally, development cycles 
should be shorter and integration of new functionality into 
existing heterogeneous systems should be frictionless. Our 
industry partners agree that software enabled process monitoring, 
analysis and quality management, increased situational awareness 
and predictive maintenance are improvements needed on the shop 
floor to cater for new products and decreased batch sizes. 
We aim at bringing flexible, scalable IT to the shop floor through 
the introduction of apps and an app ecosystem. Apps share only a 
standardized runtime platform and a lightweight standard for 
intercommunication that couples them loosely on the application 
layer. This design features seamless simultaneous development of 
many app serving different features and allows their frictionless 
integration on the shop floor. 
However, wiring and interfacing these apps together in a 
meaningful way poses challenges to the communication 
architecture. Due to heterogeneous data sources and multiple 
layers of abstraction (from machine to ERP data), it is difficult to 
find common ground when creating a functional ecosystem. We 
believe that standardization in such a domain is a very difficult 
endeavor that is destined to fail or to require unnecessary amounts 
of effort and resources. Semantic technologies however, have 
proven to more easily create static mashups with generic 
components [10] or even allow the creation of dynamic mashups 
[11]. Therefore, we opt for the use of web and semantic web 
technologies that allow a high degree of flexibility for the purpose 
of interconnection.  
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2. The App Ecosystem on the Shop Floor 
The app store model, as employed by Apple and Google with 
great success, is a centralized single-stop location that allows 
many application downloads to a common target platform. It 
combines payment models (free, freemium, paid, and paymium) 
with software distribution and feedback systems as well as 
ecosystem governance and authentication. In unison with the 
software and hardware platform (Android, iOS etc.) they have 
formed rich application ecosystems where users can easily 
download and combine apps. 
As the manufacturing industry is very different from the consumer 
market (B2C), a shop floor app ecosystem (B2B) needs to deal 
with additional requirements regarding the app store model 
(offline deployment and licensing), execution environment 
(offline, secure and safe updates), underlying business models 
(e.g. fractionalized ownership or performance based payments) 
and most importantly the much higher degree of interconnection 
between heterogeneous systems and data. The latter has a high 
impact on the potential for innovation and creation of new goods 
and services. 
In our view, the app ecosystem on the shop floor should use self-
contained click-to-install apps as users will already have had some 
experience from to their personal smart phone usage. 
In the following, we will describe the central parts of the 
envisioned app ecosystem. 
The App – Apps are defined as web applications running in 
minimal, lightweight Docker containers. To achieve isolation we 
chose docker in favor of VMs due to better performance and 
increased ease of use and more available open source tooling. In 
order to remain open and interoperable on the syntactical level 
apps are able to communicate over HTTP via REST level 3 [2]. 
On the semantical level, an app should be able to describe its APIs 
and data using some form of semantic web technologies such as 
Hydra, RDF, JSON-LD. In our model, an app may encapsulate 
fully-fledged applications by exposing them via a web interface. 
apps therefore can proxy the interaction to an entire ERP system. 
On the other end of the spectrum, an app may be just a stand-
alone HTML browser application. An app should not have 
external dependencies on any other infrastructure resources such 
as databases used to store data specific to the app in order to attain  
high modularity involving low coupling and high cohesion, 
The App Store – The app store has a central role in the eco-
system, as it is the starting point of transactions and core 
authentication hub. Additional responsibilities include app 
provisioning, deployment, and user management. The aspects of 
authentication and user management can be tackled by employing 
WebID [9], OpenID1 or other decentralized solutions used on the 
web. App provisioning and deployment are mostly delegated to 
the app execution system after proper authorization. The issues of 
firewalls and isolated networks are still open. However a 
combination of port 80 and offline duplication of resources can 
mitigate them. 
The App Execution System (AES) – is the minimal layer of 
software and hardware necessary for running apps. It can be 
understood as an operating system for apps. For example, the 
Cloudfoundry technology (used in IBM Bluemix and GE Predix) 
is a thick execution system providing database or other 
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infrastructure services. We believe that the app execution system 
should be minimal, in that it should only provide the minimum 
functionality such as app isolation, app life cycle management 
(deployment, update etc.) and allow a restricted set of API calls to 
the underlying system and hardware. Because of these reasons, we 
restricted ourselves to encapsulating apps in Docker2 containers 
and running them on the Docker daemon while requiring apps 
themselves to include all needed dependencies. With a bare 
minimum of centralized management, each app provides meta 
information (semantics, endpoints, heartbeat, ram usage etc.) 
about itself and the payload. 
Implementation of a shop floor enhancing use case entails the 
creation of a mashup consisting of a suite of light-weight, fine-
grained, loosely coupled services (the apps), each running in a 
containerized environment and having its own technological stack 
while communicating mainly over HTTP endpoints based on 
semantic query subscription patterns.  
While surveying the literature we mostly found analyses of app 
ecosystems in the public or enterprise domain [4,5,6,7,8]. 
However, no prior work has adapted the app concept to the shop 
floor and its requirements on intercommunication.  

3. Manufacturing Use Case  
Electronic manufacturing is a sensitive process and humidity and 
temperature for example, play an important role. To ensure 
quality, optical inspection steps are performed on every printed 
circuit board (PCB). However, under certain conditions issues 
with the PCBs may still arise. Therefore, to improve the quality 
and throughput, the shop floor has to be continually upgraded 
with new capabilities that allow employees to promptly react and 
reduce errors.  
First, employees need to visualize the quality inspection data, both 
on large screens and their smartphone. This in turn allows them 
make timely and more informed decisions. Second, temperature 
and humidity sensors need to be installed in order to monitor the 
production environment. In case some sensors use different units 
(˚C vs. ˚F), they still need to present meaningful data to workers 
or other machines. Third, inspection, temperature and humidity 
data need to be aggregated for both workers and data analysts. 
The latter need to be able to use the data in order to train machine 
learning models for predictive maintenance. The fourth and final 
step, is the deployment of the machine learning algorithm into 
production and associating the predictions with machine location 
and PCB meta-data. 
This scenario requires physical devices and software from 
different vendors that need to interoperate to achieve the desired 
outcome. While the predictive analytics step is still in 
development, the mashup is explained in greater detail in the 
following section. 

4. Proof of Concept Mashup 
The proof of concept mashup shown in Figure 1, consists of apps 
that are implemented as stand-alone Docker containers with 
functionality restricted to a small business value generating 
subset. Every app is uniquely identifiable and addressable within 
the web by its URL and RESTful interactions are possible. The 
apps have been developed independently and we have relied on 
common semantics to allow their interoperation. 
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The App Hub can be thought of as a very simple app store. It 
manages each app’s life cycle by generating Docker compose files 
according to which apps are part of requested mashups. 
Machine 1 and 2 are automatic optical inspection (AOI) machines. 
Inspection data is available via publish/subscribe (using server 
sent events) through the data app. Adding another machine into 
the mashup requires instantiating the data app container and 
deploying it. Inspection data is visualized inside a web app that 
uses responsive design. The visualization app can also associate 
between the different input data from the inspection machines and 
the aggregated temperature data from MOSCITO by leveraging 
the semantic annotations in the payload. 

 
Figure 1 Prototype semantic app mashup 

SIWIAT5 is an embedded gateway-as-a-box with internal apps 
developed by the authors and targeted at the industrial shop floor. 
Its role is to wrap legacy or non web-capable sensors, annotate the 
measured values and make them available via a REST interface. 
MOSCITO8 is a semantic Middleware developed by the authors 
based on OSGI, Apache Jena and the RDF4J framework. It 
provides a set of functionality for the management of semantically 
linked data accessible through RESTful Web Services, such as 
ontology and rule management, SPARQL-Endpoints as well as 
triple store connections and data integration from heterogeneous 
data sources. 
MOSCITO acts as shop floor semantics engine and visualizing 
tool that collects, connects related data form heterogeneous data 
sources and manages ontologies and rules. Figure 2 exemplifies 
the visualization of annotated data by using knowledge from 
ontologies. 
Both SIWIAT and MOSCITO do not need to rely on a common 
predefined data model for exploring, visualizing or processing 
data. Therefore, integration of shop floor data into business 
processes can be performed using semantics-driven  apps  even  as  
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Figure 2 Temperature observation rendered in MOSCITO 

with help of the semantic information 
proxies to enterprise resource planning (ERP) or manufacturing 
execution system (MES) systems. 

4.1 Payload Semantics 
Due to the lack of generally agreed upon shop floor ontology 
standards, we annotate the data by reusing existing ontologies, 
such as the Semantic Sensor Network (SSN) ontology9. 
Additionally, custom ontologies can be used to supplement the 
semantics by representing domain specific information. Listing 1 
shows semantically enriched sensor value readings using the 
JSON-LD syntax. The Ontologies used in this sample are SSN, 
QUDT10 and its extensions. 

 
Listing 1 JSON-LD snippet exemplifying semantic sensor data 

annotation 
This approach is independent of a specific all-encompassing 
ontology and can therefore be used in any domain. Moreover, a 
high degree of domain specificity can be attained, if custom 
ontologies are added to the mix in order to cover additional 
aspects. This way, migrations to upcoming shop floor ontologies 
are supported as well.  
As seen in Figure 3, the embedded IoT-Gateway technology 
SIWIAT was extended by a prototypical Linked-Data app for 
interactive semantic annotation of measurement values coming 
from sensors and machines on the shop floor.  
Each measured channel can be annotated from a list of ontology 
endpoints (Figure 3). Subsequent processing of sensor data is thus 
enriched with the first-hand knowledge about the sensor, the 
sensor application and the context of the measurements. The  
JSON-LD  output  is  JSON-LD   1.0/W3C   compliant   and   was 
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{
    "@context": {
        "qudt": "http://qudt.org/schema/qudt#",
        "qudt-unit": "http://data.nasa.gov/qudt/owl/unit#",
        "qudt-quantity": "http://qudt.org/vocab/quantity#",
        "ssn": "http://purl.oclc.org/NET/ssnx/ssn#",
        "xsd": "http://www.w3.org/2001/XMLSchema#"
    },
    "ssn:observedProperty": {
        "@id": "qudt-quantity:ThermodynamicTemperature"
    },
    "@graph": [{
        "@id": "http://example.com/siwiat/17#83-resultvalue",
        "@type": "qudt:QuantityValue",
        "qudt:quantityValue": {
            "@type": "xsd:float",
            "@value": "67.0"
        }
    }]
}



syntactically tested with a structured data validator tool. 
Selecting predefined annotations enables easy introduction of 
semantics on the shop floor by workers and domain experts alike. 
None of whom need to be experts in semantic technology. 
Semantic knowledge is pushed in the background and helps 
payloads carry the necessary information in order to allow data 
interpretation on demand and on various levels of abstraction. 

 
Figure 3 Semantic sensor annotation GUI within SIWIAT IoT 

gateway 
The sensor data integration flow that we have identified as being 
necessary to fulfill business needs is presented in the following: 
- Acquire sensor data from any sensor/machine on shop floor 
- Use semantics to annotate sensor data at earliest stage 
- Fuse sensor data from heterogeneous sources 
- Integrate sensor data in the business process & visualize data 
- Obtain and fuse other higher level information  

4.2 API Semantics 
Following the principles of Unix pipes, the complexity of the 
underlying execution environment is kept as low as possible. 
Apps are therefore responsible to annotate their own data and 
build up communications over HTTP with other apps. Therefore, 
every app has a Hydra described REST API. Semantically 
annotated APIs are a prerequisite for automatic exploration and 
reconfiguration or search for specific data. 
Hypermedia controls can be used for self-description and is an 
integral part of the REST architectural style and their proper 
application in web APIs corresponds to maturity level 3 (highest) 
in the Richardson Maturity Model (RMM) [2]. All information 
necessary to process a resource and its related resources are 
attached to the resource’s representation. Listing 2 shows an 
example from the data app GET endpoint that returns the SSN 
sensing device type of one of the AOI machines. 
In our proof of concept, we use Hydra annotations to enable apps 
to crawl APIs for the specific resource they need and the protocol 
they can speak (server sent events, web hooks, request/reply). 
Demand-driven design is a topic that currently gains popularity 
with recent emerging technologies such as GraphQL11 and 
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Falcor12. Hydra was the technology of choice in this instance 
because of the syntactical and semantical compatibilities to the 
web. However, this may change in the future if shop floor relevant 
scenarios can be implemented with less effort and more simplicity 
when using the above mentioned techonlogies. 
Leveraging this information, future apps should be able to 
autonomously create connections between themselves guided by 
consumer/producer strategies.  

 
Listing 2 Hydra vocabulary excerpt form the data app 

5. Lessons learned 
The majority of shop floors lack a flexible IT and semantic 
technologies are far from being the norm. While working with our 
industry partners, we found that prerequisites such as formalized 
knowledge and data engineering are rare. Furthermore, the IT 
environment is not flexible enough to allow efficient and effective 
implementation and deployment of software. 
The App-Store was the most familiar and accepted deployment 
concept and apps let domain experts organize and bundle their 
functionality in a modular fashion. 
While semantics allow low overhead integration of app mashups 
for shop floor business processes, further semantics tools are 
required on the shop floor in order to provide proper acquisition, 
visualization and processing. Nowadays however, PLC and CSV 
file formats still dominate and only few tools are available for 
testing, deploying, and monitoring semantic data streams. The 
transition from structured API endpoints of ERP, MES systems to 
semantic web endpoints require wrapping that can be realized as 
proxy apps.  
App technology caters for the diversity of shop floor requirements 
and supports the evolution of semantic technologies and their 
usage. Payload and API semantics allow crawling API and data in 
a uniform manner and gluing them together using domain 
concepts and the web. Additionally, shop floor domain experts 
                                                                    
12 Netflix Falcor, https://netflix.github.io/falcor/ 
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{ 

  "@id": "vocab:EntryPoint",

  "@type": "hydra:Class",

  "subClassOf": null,

  "label": "EntryPoint",

  "description": "The main entry point of the API.",

  "supportedProperty": [

    { 

      "property": {

        "@id": "vocab:EntryPoint/device",

        "@type": "hydra:Link",

        "hydra:title": "device",

        "hydra:description": "Info about the device",

        "domain": "vocab:EntryPoint",

        "range": "ssn:SensingDevice",

        "supportedOperation": [

          { 

            "@id": "_:info_retrieve",

            "@type": "hydra:Operation",

            "method": "GET",

            "label": "Retrieves the info.",

            "description": null,

            "expects": null,

            "returns": "ssn:SensingDevice",

            "statusCodes": [200, 400, 404, 500]

          }

        ]

      }

    }

  ]

}



could better understand the API. This is an important first step to 
allow the shop floor to create its own mashups without the need 
for software experts. 
We believe that an overall richer ecosystem will drive adoption by 
setting examples and proving the methods with running systems. 
We found that shop floor experts understand their own domain 
better during the semantic formalization process. Semantic 
technologies should therefore be abstracted away from the end 
user and he should experience semantic exploration at a click and 
drill-down level. This can foster “semantic” thinking without the 
technological barrier.  
Semantic annotation should take place along the entire sensor data 
value chain, as near as possible to the data source - the sensor - 
and maintained in separable abstraction levels. The different 
abstraction levels carry specific semantics that are needed by 
employees with different responsibilities. This can make domain 
design less complex. 
We used SSN and QUDT as design aids for sensor networks and 
their values. The knowledge encoded in these ontologies has 
proven useful in formalizing, structuring and organizing our 
application domain. However, scenarios that are more complex 
will be increasingly difficult to implement due to the required 
number of ad-hoc intermixed ontologies.  
A minimal ontology capturing the necessary shop floor concepts 
is an important next step towards proper semantic usage. 
Unfortunately, we could not find a usable ontology for the shop 
floor in the literature. Consequently, existing ontologies have to 
be mixed for a comprehensive mapping of data and infrastructure 
on the shop floor. Therefore, we recommend the definition of 
industry specific ontology for the shop floor. To avoid long 
standardization processes, it should be treated as a living 
document that reuses already existing ontologies by reference. 
Large-scale deployment of web and semantic technologies 
requires a strategy for retrofitting machines and shop floor 
equipment. Already deployed technologies include old standards 
such as MODBUS, Hart, ProfiBus, SPI, RS-485 or even analog 
signals. We found that the most unobtrusive, minimal and more 
accepted way is to use gateways and proxy apps that bridge these 
signals to the layers of the web. 
Exploring the possibility of using web and semantic web 
technologies on the manufacturing shop floor is an ongoing 
research effort. However, the technologies we selected are 
sufficient for functioning prototypes and our experiences were 
positive and promising up to this point. 

6. Conclusion 
In this paper we have proposed modularizing the application 
development for the shop floor and adopting an app ecosystem 
style of IT governance.  
Certainly, apps for the shop floor have greater complexity and 
require increased security and a higher degree of interconnection 
in order to generate the necessary business value13. This of course 
poses the extra challenge of supporting multiple vendors and the 
heterogeneous environments typically found in IoT scenarios. In 
this regard, semantics are no decoration but essential requirements 
to make apps interoperable. 
We create app interoperability by bridging the syntactical barriers 
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via web technologies such as HTTP and JSON-LD and the 
semantic barriers by using semantic technologies as API glue and 
exchanging semantically enriched payloads using standardized 
web ontologies. 
We sketched a technological platform based on the app paradigm 
that allows the rapid introduction of new IT particularly in small 
to medium industrial enterprises and shared our lessons learned. 
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