
Towards the Shop Floor App Ecosystem:
Using the Semantic Web for Gluing Together Apps into Mashups

Andrei Miclaus
Karlsruhe Institute of Technology

Vincenz-Prießnitz-Str. 1
D-76131 Karlsruhe

+49-721-608-417-08
andrei.miclaus@kit.edu

Martin Alexander Neumann
Karlsruhe Institute of Technology

+49-721-608-417-07
martin.neumann@kit.edu

Fabian Schmidt

SICK AG
Erwin-Sick-Str. 1

D-79183 Waldkirch
+49-7681-202-4172

fabian.schmidt@sick.de

Wolfgang Clauss
Ondics GmbH

Neckarstraße 66/1a
D-73728 Esslingen

+49-711-310093100
wolfgang.clauss@ondics.de

Ferdinand Mütsch

Karlsruhe Institute of Technology
ferdinand.muetsch@student.kit.

edu

Michael Beigl
Karlsruhe Institute of Technology

+49-721-608-417-00
michael.beigl@kit.edu

Eugen Schwert
Atos Bull GmbH

Zettachring 2
D-70567 Stuttgart

+49-211-39934092
eugen.schwert@atos.net

Till Riedel

Karlsruhe Institute of Technology
+49-721-608-417-06
till.riedel@kit.edu

ABSTRACT
Any upcoming industrial revolution will rely on the ability to
harness software as the nervous system of future production
environments. This paper proposes an app ecosystem as key
enabler of industry digitization and argues for the need of
semantic web technologies as primary enablers for their
interoperability. We shortly discuss how we envision the
emergence of semantically annotated apps on the manufacturing
shop floor. Subsequently, we demonstrate how a loosely coupled
mashup of apps can easily form a full stack internet of things
solution that covers sensor data from its origin toward its
visualization in a web browser.

CCS Concepts
• Information systems�Mashups • Information
systems�Semantic web description languages • Software and
its engineering�Distributed systems organizing principles
• Information systems�Web services

Keywords
App; App Ecosystem; Mashups; Shop Floor; Manufacturing
Industry; Web; Semantic Web; Linked-Data;

1. INTRODUCTION
Modern manufacturing relies on continuous productivity improve-
ments to maintain profitability. With an increasingly important
role, software is a key enabler for efficiency.

However, interoperability between existing systems and the
addition of new software prove to be challenging and expensive
tasks due to technical and sometimes human factors. These
impediments turn the shop floor IT into a rigid siloed landscape.
Software needs to become more flexible in order to adapt to
business needs and more transparent in order to increase a feeling
of control for the software operators. Ideally, development cycles
should be shorter and integration of new functionality into
existing heterogeneous systems should be frictionless. Our
industry partners agree that software enabled process monitoring,
analysis and quality management, increased situational awareness
and predictive maintenance are improvements needed on the shop
floor to cater for new products and decreased batch sizes.
We aim at bringing flexible, scalable IT to the shop floor through
the introduction of apps and an app ecosystem. Apps share only a
standardized runtime platform and a lightweight standard for
intercommunication that couples them loosely on the application
layer. This design features seamless simultaneous development of
many app serving different features and allows their frictionless
integration on the shop floor.
However, wiring and interfacing these apps together in a
meaningful way poses challenges to the communication
architecture. Due to heterogeneous data sources and multiple
layers of abstraction (from machine to ERP data), it is difficult to
find common ground when creating a functional ecosystem. We
believe that standardization in such a domain is a very difficult
endeavor that is destined to fail or to require unnecessary amounts
of effort and resources. Semantic technologies however, have
proven to more easily create static mashups with generic
components [10] or even allow the creation of dynamic mashups
[11]. Therefore, we opt for the use of web and semantic web
technologies that allow a high degree of flexibility for the purpose
of interconnection.

Copyright held by the authors

2. The App Ecosystem on the Shop Floor
The app store model, as employed by Apple and Google with
great success, is a centralized single-stop location that allows
many application downloads to a common target platform. It
combines payment models (free, freemium, paid, and paymium)
with software distribution and feedback systems as well as
ecosystem governance and authentication. In unison with the
software and hardware platform (Android, iOS etc.) they have
formed rich application ecosystems where users can easily
download and combine apps.
As the manufacturing industry is very different from the consumer
market (B2C), a shop floor app ecosystem (B2B) needs to deal
with additional requirements regarding the app store model
(offline deployment and licensing), execution environment
(offline, secure and safe updates), underlying business models
(e.g. fractionalized ownership or performance based payments)
and most importantly the much higher degree of interconnection
between heterogeneous systems and data. The latter has a high
impact on the potential for innovation and creation of new goods
and services.
In our view, the app ecosystem on the shop floor should use self-
contained click-to-install apps as users will already have had some
experience from to their personal smart phone usage.
In the following, we will describe the central parts of the
envisioned app ecosystem.
The App – Apps are defined as web applications running in
minimal, lightweight Docker containers. To achieve isolation we
chose docker in favor of VMs due to better performance and
increased ease of use and more available open source tooling. In
order to remain open and interoperable on the syntactical level
apps are able to communicate over HTTP via REST level 3 [2].
On the semantical level, an app should be able to describe its APIs
and data using some form of semantic web technologies such as
Hydra, RDF, JSON-LD. In our model, an app may encapsulate
fully-fledged applications by exposing them via a web interface.
apps therefore can proxy the interaction to an entire ERP system.
On the other end of the spectrum, an app may be just a stand-
alone HTML browser application. An app should not have
external dependencies on any other infrastructure resources such
as databases used to store data specific to the app in order to attain
high modularity involving low coupling and high cohesion,
The App Store – The app store has a central role in the eco-
system, as it is the starting point of transactions and core
authentication hub. Additional responsibilities include app
provisioning, deployment, and user management. The aspects of
authentication and user management can be tackled by employing
WebID [9], OpenID1 or other decentralized solutions used on the
web. App provisioning and deployment are mostly delegated to
the app execution system after proper authorization. The issues of
firewalls and isolated networks are still open. However a
combination of port 80 and offline duplication of resources can
mitigate them.
The App Execution System (AES) – is the minimal layer of
software and hardware necessary for running apps. It can be
understood as an operating system for apps. For example, the
Cloudfoundry technology (used in IBM Bluemix and GE Predix)
is a thick execution system providing database or other

1 OpenID, http://openid.net

infrastructure services. We believe that the app execution system
should be minimal, in that it should only provide the minimum
functionality such as app isolation, app life cycle management
(deployment, update etc.) and allow a restricted set of API calls to
the underlying system and hardware. Because of these reasons, we
restricted ourselves to encapsulating apps in Docker2 containers
and running them on the Docker daemon while requiring apps
themselves to include all needed dependencies. With a bare
minimum of centralized management, each app provides meta
information (semantics, endpoints, heartbeat, ram usage etc.)
about itself and the payload.
Implementation of a shop floor enhancing use case entails the
creation of a mashup consisting of a suite of light-weight, fine-
grained, loosely coupled services (the apps), each running in a
containerized environment and having its own technological stack
while communicating mainly over HTTP endpoints based on
semantic query subscription patterns.
While surveying the literature we mostly found analyses of app
ecosystems in the public or enterprise domain [4,5,6,7,8].
However, no prior work has adapted the app concept to the shop
floor and its requirements on intercommunication.

3. Manufacturing Use Case
Electronic manufacturing is a sensitive process and humidity and
temperature for example, play an important role. To ensure
quality, optical inspection steps are performed on every printed
circuit board (PCB). However, under certain conditions issues
with the PCBs may still arise. Therefore, to improve the quality
and throughput, the shop floor has to be continually upgraded
with new capabilities that allow employees to promptly react and
reduce errors.
First, employees need to visualize the quality inspection data, both
on large screens and their smartphone. This in turn allows them
make timely and more informed decisions. Second, temperature
and humidity sensors need to be installed in order to monitor the
production environment. In case some sensors use different units
(˚C vs. ˚F), they still need to present meaningful data to workers
or other machines. Third, inspection, temperature and humidity
data need to be aggregated for both workers and data analysts.
The latter need to be able to use the data in order to train machine
learning models for predictive maintenance. The fourth and final
step, is the deployment of the machine learning algorithm into
production and associating the predictions with machine location
and PCB meta-data.
This scenario requires physical devices and software from
different vendors that need to interoperate to achieve the desired
outcome. While the predictive analytics step is still in
development, the mashup is explained in greater detail in the
following section.

4. Proof of Concept Mashup
The proof of concept mashup shown in Figure 1, consists of apps
that are implemented as stand-alone Docker containers with
functionality restricted to a small business value generating
subset. Every app is uniquely identifiable and addressable within
the web by its URL and RESTful interactions are possible. The
apps have been developed independently and we have relied on
common semantics to allow their interoperation.

2 Docker, https://www.docker.com/

The App Hub can be thought of as a very simple app store. It
manages each app’s life cycle by generating Docker compose files
according to which apps are part of requested mashups.
Machine 1 and 2 are automatic optical inspection (AOI) machines.
Inspection data is available via publish/subscribe (using server
sent events) through the data app. Adding another machine into
the mashup requires instantiating the data app container and
deploying it. Inspection data is visualized inside a web app that
uses responsive design. The visualization app can also associate
between the different input data from the inspection machines and
the aggregated temperature data from MOSCITO by leveraging
the semantic annotations in the payload.

Figure 1 Prototype semantic app mashup

SIWIAT5 is an embedded gateway-as-a-box with internal apps
developed by the authors and targeted at the industrial shop floor.
Its role is to wrap legacy or non web-capable sensors, annotate the
measured values and make them available via a REST interface.
MOSCITO8 is a semantic Middleware developed by the authors
based on OSGI, Apache Jena and the RDF4J framework. It
provides a set of functionality for the management of semantically
linked data accessible through RESTful Web Services, such as
ontology and rule management, SPARQL-Endpoints as well as
triple store connections and data integration from heterogeneous
data sources.
MOSCITO acts as shop floor semantics engine and visualizing
tool that collects, connects related data form heterogeneous data
sources and manages ontologies and rules. Figure 2 exemplifies
the visualization of annotated data by using knowledge from
ontologies.
Both SIWIAT and MOSCITO do not need to rely on a common
predefined data model for exploring, visualizing or processing
data. Therefore, integration of shop floor data into business
processes can be performed using semantics-driven apps even as

5 Ondics SIWIAT, http://siwiat.com/de/app-box
8 Bull, http://www.bull.com

Figure 2 Temperature observation rendered in MOSCITO

with help of the semantic information
proxies to enterprise resource planning (ERP) or manufacturing
execution system (MES) systems.

4.1 Payload Semantics
Due to the lack of generally agreed upon shop floor ontology
standards, we annotate the data by reusing existing ontologies,
such as the Semantic Sensor Network (SSN) ontology9.
Additionally, custom ontologies can be used to supplement the
semantics by representing domain specific information. Listing 1
shows semantically enriched sensor value readings using the
JSON-LD syntax. The Ontologies used in this sample are SSN,
QUDT10 and its extensions.

Listing 1 JSON-LD snippet exemplifying semantic sensor data

annotation
This approach is independent of a specific all-encompassing
ontology and can therefore be used in any domain. Moreover, a
high degree of domain specificity can be attained, if custom
ontologies are added to the mix in order to cover additional
aspects. This way, migrations to upcoming shop floor ontologies
are supported as well.
As seen in Figure 3, the embedded IoT-Gateway technology
SIWIAT was extended by a prototypical Linked-Data app for
interactive semantic annotation of measurement values coming
from sensors and machines on the shop floor.
Each measured channel can be annotated from a list of ontology
endpoints (Figure 3). Subsequent processing of sensor data is thus
enriched with the first-hand knowledge about the sensor, the
sensor application and the context of the measurements. The
JSON-LD output is JSON-LD 1.0/W3C compliant and was

9 SSN Ontology, https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
10 QUDT Ontology, http://www.qudt.org/

Unit-abbreviation from
QUDT-Ontology

Quantity-name	from
QUDT-Ontology

CodeMirror

Home

Manual

Code

Language modes

JSON-LD

JSON-LD mode

This is a specialization of the JavaScript mode.

{
 "@context": {
 "qudt": "http://qudt.org/schema/qudt#",
 "qudt-unit": "http://data.nasa.gov/qudt/owl/unit#",
 "qudt-quantity": "http://qudt.org/vocab/quantity#",
 "ssn": "http://purl.oclc.org/NET/ssnx/ssn#",
 "xsd": "http://www.w3.org/2001/XMLSchema#"
 },
 "ssn:observedProperty": {
 "@id": "qudt-quantity:ThermodynamicTemperature"
 },
 "@graph": [{
 "@id": "http://example.com/siwiat/17#83-resultvalue",
 "@type": "qudt:QuantityValue",
 "qudt:quantityValue": {
 "@type": "xsd:float",
 "@value": "67.0"
 }
 }]
}

syntactically tested with a structured data validator tool.
Selecting predefined annotations enables easy introduction of
semantics on the shop floor by workers and domain experts alike.
None of whom need to be experts in semantic technology.
Semantic knowledge is pushed in the background and helps
payloads carry the necessary information in order to allow data
interpretation on demand and on various levels of abstraction.

Figure 3 Semantic sensor annotation GUI within SIWIAT IoT

gateway
The sensor data integration flow that we have identified as being
necessary to fulfill business needs is presented in the following:
- Acquire sensor data from any sensor/machine on shop floor
- Use semantics to annotate sensor data at earliest stage
- Fuse sensor data from heterogeneous sources
- Integrate sensor data in the business process & visualize data
- Obtain and fuse other higher level information

4.2 API Semantics
Following the principles of Unix pipes, the complexity of the
underlying execution environment is kept as low as possible.
Apps are therefore responsible to annotate their own data and
build up communications over HTTP with other apps. Therefore,
every app has a Hydra described REST API. Semantically
annotated APIs are a prerequisite for automatic exploration and
reconfiguration or search for specific data.
Hypermedia controls can be used for self-description and is an
integral part of the REST architectural style and their proper
application in web APIs corresponds to maturity level 3 (highest)
in the Richardson Maturity Model (RMM) [2]. All information
necessary to process a resource and its related resources are
attached to the resource’s representation. Listing 2 shows an
example from the data app GET endpoint that returns the SSN
sensing device type of one of the AOI machines.
In our proof of concept, we use Hydra annotations to enable apps
to crawl APIs for the specific resource they need and the protocol
they can speak (server sent events, web hooks, request/reply).
Demand-driven design is a topic that currently gains popularity
with recent emerging technologies such as GraphQL11 and

11 Facebook GraphQL, http://graphql.org/

Falcor12. Hydra was the technology of choice in this instance
because of the syntactical and semantical compatibilities to the
web. However, this may change in the future if shop floor relevant
scenarios can be implemented with less effort and more simplicity
when using the above mentioned techonlogies.
Leveraging this information, future apps should be able to
autonomously create connections between themselves guided by
consumer/producer strategies.

Listing 2 Hydra vocabulary excerpt form the data app

5. Lessons learned
The majority of shop floors lack a flexible IT and semantic
technologies are far from being the norm. While working with our
industry partners, we found that prerequisites such as formalized
knowledge and data engineering are rare. Furthermore, the IT
environment is not flexible enough to allow efficient and effective
implementation and deployment of software.
The App-Store was the most familiar and accepted deployment
concept and apps let domain experts organize and bundle their
functionality in a modular fashion.
While semantics allow low overhead integration of app mashups
for shop floor business processes, further semantics tools are
required on the shop floor in order to provide proper acquisition,
visualization and processing. Nowadays however, PLC and CSV
file formats still dominate and only few tools are available for
testing, deploying, and monitoring semantic data streams. The
transition from structured API endpoints of ERP, MES systems to
semantic web endpoints require wrapping that can be realized as
proxy apps.
App technology caters for the diversity of shop floor requirements
and supports the evolution of semantic technologies and their
usage. Payload and API semantics allow crawling API and data in
a uniform manner and gluing them together using domain
concepts and the web. Additionally, shop floor domain experts

12 Netflix Falcor, https://netflix.github.io/falcor/

Sensor/
Machine

Dropdowns	with Shopfloor
annotations (from selected
Ontologies)

Measured
values

CodeMirror

Home

Manual

Code

Language modes

JSON-LD

JSON-LD mode

This is a specialization of the JavaScript mode.

{

 "@id": "vocab:EntryPoint",

 "@type": "hydra:Class",

 "subClassOf": null,

 "label": "EntryPoint",

 "description": "The main entry point of the API.",

 "supportedProperty": [

 {

 "property": {

 "@id": "vocab:EntryPoint/device",

 "@type": "hydra:Link",

 "hydra:title": "device",

 "hydra:description": "Info about the device",

 "domain": "vocab:EntryPoint",

 "range": "ssn:SensingDevice",

 "supportedOperation": [

 {

 "@id": "_:info_retrieve",

 "@type": "hydra:Operation",

 "method": "GET",

 "label": "Retrieves the info.",

 "description": null,

 "expects": null,

 "returns": "ssn:SensingDevice",

 "statusCodes": [200, 400, 404, 500]

 }

]

 }

 }

]

}

could better understand the API. This is an important first step to
allow the shop floor to create its own mashups without the need
for software experts.
We believe that an overall richer ecosystem will drive adoption by
setting examples and proving the methods with running systems.
We found that shop floor experts understand their own domain
better during the semantic formalization process. Semantic
technologies should therefore be abstracted away from the end
user and he should experience semantic exploration at a click and
drill-down level. This can foster “semantic” thinking without the
technological barrier.
Semantic annotation should take place along the entire sensor data
value chain, as near as possible to the data source - the sensor -
and maintained in separable abstraction levels. The different
abstraction levels carry specific semantics that are needed by
employees with different responsibilities. This can make domain
design less complex.
We used SSN and QUDT as design aids for sensor networks and
their values. The knowledge encoded in these ontologies has
proven useful in formalizing, structuring and organizing our
application domain. However, scenarios that are more complex
will be increasingly difficult to implement due to the required
number of ad-hoc intermixed ontologies.
A minimal ontology capturing the necessary shop floor concepts
is an important next step towards proper semantic usage.
Unfortunately, we could not find a usable ontology for the shop
floor in the literature. Consequently, existing ontologies have to
be mixed for a comprehensive mapping of data and infrastructure
on the shop floor. Therefore, we recommend the definition of
industry specific ontology for the shop floor. To avoid long
standardization processes, it should be treated as a living
document that reuses already existing ontologies by reference.
Large-scale deployment of web and semantic technologies
requires a strategy for retrofitting machines and shop floor
equipment. Already deployed technologies include old standards
such as MODBUS, Hart, ProfiBus, SPI, RS-485 or even analog
signals. We found that the most unobtrusive, minimal and more
accepted way is to use gateways and proxy apps that bridge these
signals to the layers of the web.
Exploring the possibility of using web and semantic web
technologies on the manufacturing shop floor is an ongoing
research effort. However, the technologies we selected are
sufficient for functioning prototypes and our experiences were
positive and promising up to this point.

6. Conclusion
In this paper we have proposed modularizing the application
development for the shop floor and adopting an app ecosystem
style of IT governance.
Certainly, apps for the shop floor have greater complexity and
require increased security and a higher degree of interconnection
in order to generate the necessary business value13. This of course
poses the extra challenge of supporting multiple vendors and the
heterogeneous environments typically found in IoT scenarios. In
this regard, semantics are no decoration but essential requirements
to make apps interoperable.
We create app interoperability by bridging the syntactical barriers

13 Metcalfe’s Law, https://en.wikipedia.org/wiki/Metcalfe's_law

via web technologies such as HTTP and JSON-LD and the
semantic barriers by using semantic technologies as API glue and
exchanging semantically enriched payloads using standardized
web ontologies.
We sketched a technological platform based on the app paradigm
that allows the rapid introduction of new IT particularly in small
to medium industrial enterprises and shared our lessons learned.

7. ACKNOWLEDGMENTS
This work was funded by the German Federal Ministry of
Education and Research (BMBF) as part of the ScaleIT14 project
(grant nr. 02P14B189). We wish to thank our project partners for
the valuable insights they have provided us.

8. REFERENCES
[1] Dominique Guinard and Vlad Trifa. 2016. Building the Web

of Things: With examples in Node.js and Raspberry Pi.
Manning Publications.

[2] Martin Fowler. 2010. Richardson Maturity Model @
martinfowler.com. Retrieved June 23, 2016 from
http://martinfowler.com/articles/richardsonMaturityModel.html

[3] Markus Lanthaler and Christian Gütl. 2013. Hydra: A
vocabulary for hypermedia-driven web APIs. In CEUR
Workshop Proceedings. Retrieved March 27, 2016 from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.362.4758

[4] S. Leminen, M. Westerlund, M. Rajahonka, and R.
Siuruainen, “Towards IOT ecosystems and business models,”
Lect. Notes Comput. Sci, vol. 7469 LNCS, 2012.

[5] K Kimbler. 2010. App store strategies for service providers.
14th International Conference on Intelligence in Next
Generation Networks (ICIN), 2010.
doi:10.1109/ICIN.2010.5640947

[6] Jieun Kim, Yongtae Park, Chulhyun Kim, and Hakyeon Lee.
2014. Mobile application service networks: Apple’s App
Store. doi:10.1007/s11628-013-0184-z

[7] Stefan Wenzel. 2014. App Store Models for Enterprise
Software: A Comparative Case Study of Public versus
Internal Enterprise App Stores. Software Business. Towards
Continuous Value Delivery, 2014, doi:10.1007/978-3-319-
08738-2_16

[8] Roland M Müller, Bjorn Kijl, and Josef K J Martens. 2011.
A comparison of inter-organizational business models of
mobile app stores. Journal of theoretical and applied
electronic commerce research 6

[9] Sambra Andrei, Henry Story, and Tim Berners-Lee. 2014.
WebID 1.0: Web Identity and Discovery. Retrieved from
https://www.w3.org/2005/Incubator/webid/spec/identity/

[10] Robert Battle and Edward Benson. 2008. Bridging the
semantic Web and Web 2.0 with representational state
transfer (REST). Web Semantics: Science, Services and
Agents on the World Wide Web 6.

[11] Simon Mayer, Nadine Inhelder, Ruben Verborgh, Rik de
Walle, and Friedemann Mattern. 2014. Configuration of
smart environments made simple: Combining visual
modeling with semantic metadata and reasoning. Inter-
national Conference on the Internet of Things (IOT), 2014

14 ScaleIT Industry 4.0 project, https://scale-it.org

