
Towards Integration of Big Data Analytics in Internet of
Things Mashup Tools

Tanmaya Mahapatra
Fakultät für Informatik
Technische Universität

München
mahapatr@in.tum.de

Ilias Gerostathopoulos
Fakultät für Informatik
Technische Universität

München
gerostat@in.tum.de

Christian Prehofer
Fakultät für Informatik
Technische Universität

München
prehofer@in.tum.de

ABSTRACT
The increasing number and sensing capabilities of connected
devices offer unique opportunities for developing sophisti-
cated applications that employ data analysis as part of their
business logic to make informed decisions based on sensed
data. So far, mashup tools have been successful in sup-
porting application development for Internet of Things. At
the same time, Big Data analytics tools have allowed the
analysis of very large and diverse data sets. The problem
is that there is no consolidated development approach for
integrating the two fields, IoT mashups and Big Data ana-
lytics. Such integration should go beyond merely specifying
IoT mashups that only act as data providers. Mashup devel-
opers should also be able to specify Big Data analytics jobs
and consume their results within a single application model.
In this paper, we contribute to the direction of integrating
Big Data analytics with IoT mashup tools by highlighting
the need for such integration and the challenges that it en-
tails via concrete examples. We also provide a research and
development roadmap that can pave the way forward.

Keywords
IoT mashups; Big Data analytics; Development support

1. INTRODUCTION
Within the advancements in information and communi-

cation technologies the last years there are two important
trends. First, the number, usage and capabilities of end-
user devices, such as smart phones, tablets, wearables, and
sensors are constantly increasing. Second, end-user devices
are becoming more and more connected to each other and
to the Internet. With the advent of 5G networks in the near
future, the vision of ubiquitous connected physical objects,
commonly referred to as the Internet of Things (IoT), will
become a reality.

In a world of connected devices, there will be a huge
amount of data that will be constantly recorded and used
for real-time and/or historical analysis. Such analysis can

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

lead to important insights regarding individual and group
preferences and patterns of end-users (e.g. mobility mod-
els), the state of engineering structures (e.g. as in structural
health monitoring), the future state of the physical environ-
ment (e.g. flood prediction in rivers). These insights can in
turn allow the creation of sophisticated, high-impact appli-
cations. Traffic congestion can be avoided by using learned
traffic patterns. Damages in buildings and bridges can be
better detected and repairs can be better planned by us-
ing structural health monitoring techniques. More accurate
prediction of floods can enhance the ways authorities and
individuals react to them.

Despite the great potential of combining IoT sensing and
actuating with data analysis, developing applications that
control the operation of IoT sensors and actuators is alone
a challenge. Developers have to write complex boilerplate
code to communicate with heterogeneous devices. They
have to perform custom data transformations on raw data to
make them useful for later stages. Device identification and
coordination are other distinct challenges in IoT application
development.

To deal with some of these challenges, dedicated IoT de-
velopment tools called IoT mashup tools can be used. Such
tools expedite the process of creating and deploying sim-
ple IoT applications that consume data generated from IoT
sensors, publish data to external services or other devices.
They typically offer graphical interfaces for specifying the
data flow between sensors, actuators, and services, which
lowers the barrier of creating IoT applications for end-users.

Deriving insights from data collected from IoT devices is a
separate challenge that falls primarily into the topic of data
analysis and machine learning. In the past years, a number
of mature tools have emerged that focus on manipulation
and analysis of data of high volume, velocity, and variety—
commonly referred to as Big Data. Big Data analytics tools
allow massively parallelized data analysis and machine learn-
ing algorithms to operate on data sets that reside in large
clusters of commodity machines in a cost-effective way.

Although the integration of existing IoT mashup tools
with Big Data analytics tools can allow the seamless de-
velopment of sophisticated, high-impact applications, it is
far from straightforward. Such integration should go be-
yond merely specifying IoT mashups that only act as data
providers for Big Data clusters. Mashup developers should
also be able to specify Big Data analytics jobs and consume
their results within a single application model. Only such
integration can effectively enhance the development of IoT
mashups that continuously harness the value out of sensed



data in their operation.
In response, the contribution of this position paper is to (i)

highlight the need for full integration of Big Data analytics
with IoT mashup tools via concrete examples, (ii) present
the challenges such an integration entails, and (iii) provide a
research and development roadmap with concrete directions
forward.

By integration we mean to develop a uniform application
model, and associated model of computation, that will let us
specify big data analytics as a part of the regular business
logic of an application.

The rest of the text is structured as follows. Section 2
provides background information on both IoT mashups and
mashup tools and Big Data analytics tools. Section 3 pro-
vides two examples where the integration of existing tools
from the two domains would be beneficial. Section 4 pro-
vides a set of limitations that hinder such integration and
articulate a number of distinct research directions to over-
come them. Finally, Section 5 surveys the related work and
Section 6 provides concluding remarks.

2. BACKGROUND

2.1 IoT Mashup Tools
A mashup application or simply a mashup is an agglom-

eration of different reusable components accessible on the
web. The building blocks which make up a mashup known as
“mashup components”while the orchestration of the mashup
components is known as the “mashup logic” [5]. The flow
between various components often involves data transforma-
tion and is also accompanied with business logic designed to
perform specific tasks relevant to the application objective.
The components can provide logic functionality, e.g.: use
of web-accessible sorting or searching algorithms as compo-
nents in a mashup. They can also provide data input to the
application like simple XML files, Really Simple Syndication
(RSS) feeds etc. or even provide fragments of User Interface
which can be integrated in the main application.

http Fn.

if

Twitter

GET
/city{id}/temp

Data from
REST API

Business Logic

Tweet
Message

Figure 1: Outline of a typical mashup.

Mashup tools help the users to develop a mashup applica-
tion. They typically have a graphical editor permitting the
user to model how the control flows between a set of compo-
nents. A description of how a typical mashup looks like will
make things clear. For instance, consider that the weather
data is available with the help of REST APIs. A user wants
to get this data, apply some transformation and post it to
twitter. The mashup depicting the flow for this scenario is
given in Figure 1. The “Fn.” block in the figure contains
code (business logic, depicted by the “if” block) which ac-

complishes the data transformations. The orchestration of 3
components namely data from web, a function block and a
tweeter block clearly depicts how the control flows through
them to fulfill the application objective. These components
are generally represented by GUI blocks in a mashup tool
which have to be connected suitably to represent the entire
business logic.

Some of the most prominent IoT platforms which also
house a mashup tool for service composition include glue.-
things [9], Thingstore [1], OpenIoT [8], ThingWorx [6], Parai-
mpu [11], Xively [6] etc. Node-RED is a visual programming
environment developed by IBM which supports the creation
of mashups. It is very popular these days. However, it is
important to note that Node-RED is not a complete IoT
platform by itself as it does not support device registra-
tion and management. glue.things uses an improved version
of Node-RED as a mashup-environment along with device
management features.

In Node-RED, a developed mashup is called a “flow”. A
flow is simply the interconnection of various components,
called “nodes”, diagrammatically. The nodes can be de-
vices, software platforms or web services. There are special
nodes which allow the end-developer to write code snippets
to effectively express the business logic of the application.
With Node-RED the time and effort spent on writing boil-
erplate code is greatly reduced, and the developer can focus
on the business parts of the application. Tools like Node-
RED are indispensable for creating applications in a typical
IoT setup.

2.2 Big Data Analytics Tools
In the last decade, a number of Big Data analytics tools

have emerged to satisfy different business needs, such as tar-
geted advertising, social network analysis, sentiment anal-
ysis, malware analysis and others. From a technical per-
spective, Big Data analytics can however be divided into
two modes: (i) manipulating and querying in parallel large
amounts of data residing in clusters of commodity machines
(batch mode), and (ii) accommodating and analyzing large
amounts of incoming data as they come (streaming mode).
These two modes co-exist in the lambda architecture [10],
where the outputs from the two processing modes are com-
bined in a serving layer before delivering the final result. In
the following, we describe representative tools that focus on
the batch mode of operation and belong to Hadoop—a pop-
ular open-source ecosystem of tools supported by Apache.

Hive.
Hive is a data warehousing solution built on top of Hadoop.

Its main goal is to simplify the querying and analysis tasks
in Hadoop by providing a familiar SQL-like syntax for per-
forming these tasks. Hive alleviates the problem of writing
custom MapReduce (MR) programs that are hard to main-
tain and reuse and allows non-programmers to interact with
Hadoop for reporting and ad-hoc data analysis.

Hive provides an SQL-like declarative language called Hive-
QL for specifying queries. Queries are internally compiled
into MR programs and executed on a Hadoop cluster. In
particular, Hive supports Data Definition statements for cre-
ating tables, data manipulation (DML) statements such as
load, and typical SQL statements such as select, join, union,
group by, order by, etc. Database schemas are kept in a sys-
tem catalog called metastore, which is physically stored in



a relational database. As HDFS is not optimized for the
use cases of a relational database, Hive combines HDFS
with the fast random access from well known databases like
MySQL or a local file system in a component called Meta-
Store. When working with Hive, a user can create tables
schemas and load data to them from files in the HDFS. Hive
supports reading and writing in a number of serialization
formats including CSV and JSON.

Once a query is issued, it gets translated into an execution
plan. In case of DLL statements, the plan consists only of
metadata operations, while LOAD statements are translated
to HDFS operations. In case of INSERT statements and
regular queries, the plan consists of a directed-acyclic graph
of MR jobs, which get executed in the Hadoop cluster.

Pig.
Pig is a scripting layer on top of Hadoop MR. It can be

used as alternative to Hive for simplifying the querying and
analysis tasks. However, whereas Hive targets data analysts
with SQL expertise, Pig targets mainly developers with pro-
cedural programming expertise.

Pig provides a procedural query language called Pig Latin.
A Pig Latin program is a sequence of statements, each of
which specifies only a single data transformation. State-
ments are constructed with the use of SQL-style high-level
data manipulation constructs, e.g. JOIN, GROUP, OR-
DER, DISTINCT, FILTER, FOREACH, and others. An
illustrative example is depicted in Figure 9. As an impor-
tant difference to SQL, where only flat tables are allowed,
Pig Latin has a nested data model that allows non-atomic
data types such as tuple, set, and map to occur as fields of
a table. This provides more intuitive and flexible program-
ming abstractions. Apart from using its built-in constructs,
Pig allows users to provide User-Defined Functions, typically
written in Java, that extend the functionality of Pig.

A Pig Latin program essentially can be represented by a
directed acyclic graph where nodes represent data transfor-
mations and links represent data flow. This is called logical
plan. Logical plans get translated to physical plans, which
in turn get translated to MR jobs by the Pig compiler.

Spark.
Spark is a computing framework for large clusters. It has

been conceived to deal with two main shortcomings of tra-
ditional MR-based computations on top of HDFS: (i) they
do not to support interactive data exploration and analyt-
ics due to high latency in the scale of minutes and hours,
and (ii) they do not support iterative jobs, where a function
is repeatedly applied to a dataset—a common case in many
multi-pass machine learning computations. Spark deals with
both these issues by keeping data in memory at each cluster
node and preventing the reloading of data from disk as much
as possible.

The main abstraction in Spark is that of a Resilient Dis-
tributed Dataset (RDD). An RDD is a read-only, partitioned
collection of records. RDDs can only be created by deter-
ministic operations on (i) data in non-volatile storage (e.g.
HDFS) and (ii) other RDDs via transformations such as
map, filter, sort, join, and union. RDDs do not have to
be materialized at all times; instead, an RDD has enough
information about how it was derived from other RDDs
(and transitively from other stable datasets)—its origin or
lineage—to reconstruct itself by computing its partitions

from stable storage. This provides strong fault tolerance
and recoverability.

To use Spark, developers write a driver program that con-
nects to a cluster of workers. The driver defines one or more
RDDs and invokes actions on them. Actions are specified
by passing Scala closures (function literals) as parameters to
generic RDD operations. Apart from Scala, it allows writing
driver programs in Java, Python and R. Most importantly,
it comes with a number of accompanying libraries to sup-
port real-time SQL querying (Spark SQL), graph processing
(GraphX), machine learning (MLlib) and stream analytics
based on micro-batches (Spark Streaming).

3. NEED FOR INTEGRATION
A large number of IoT devices with their wide range of

sensors generate a huge volume of data which has variety,
volume and velocity to qualify as Big Data. Till now a huge
amount of research has been done on how to collect and
store such data in Big Data infrastructure and analytics is
performed on these data sets separately to gain insights [2].
However, as far as the application development scenario is
concerned using mashup tools, no significant amount of re-
search has been done on how to make use of Big Data an-
alytics during application development. Traditionally, the
worlds of IoT and Big Data have stood apart from each
other. IoT is used for collecting data into storage and writ-
ing business logic while Big Data for analysis. However, in
many scenarios, it is important to interlink both the worlds
in an integrated way. There are certain scenarios in which
business logic of mashups may need input from Big Data
jobs i.e. mashups may require to trigger data analysis. Sim-
ilarly, after the execution of Big Data jobs there may arise
need to perform some additional task i.e. may need to trig-
ger a flow in mashup. Here we try to illustrate with a few
example scenarios where the integration of Big Data analyt-
ics and business logic in application development is really
useful to generate value for end-users.

3.1 Mashup involving Big Data analytics for
traffic management

Consider a road traffic monitoring system which is used for
traffic management and data collection. The system records
live traffic data including flow monitoring i.e. number of
vehicles using a certain motorway during different times of
the day. The system automatically detects incidents like
accidents, congestion, fire breakage etc. The recorded data
is stored in clusters of Big Data systems.

On detection of a new incident, the system generates an
alarm. It is crucial to know the actual reason behind the
alarm either to initiate appropriate counter measures for
the smooth handling of city traffic or to treat it as a false
alarm. Mashups are a good fit in this scenario as develop-
ing applications using tools is both quick and cost effective.
A mashup designed to find the cause for such a scenario
takes the incident as input and does a preliminary analysis
to determine if such an incident ever occurred in near past.
Based on this analysis, it decides if it has the prerequisite
information to initiate counter measures or if it needs to de-
rive more knowledge about the incident by running a set of
analytic jobs on the data sets stored in the clusters. In the
event of availability of past information about similar inci-
dents it can initiate appropriate counter measures directly.
Otherwise, it invokes a set of jobs in parallel to perform fur-



ther analysis to determine the cause of the incident like fire
breakage, accidents or normal peak periods of the day etc.
The application analyses the outcome of these jobs to facil-
itate an appropriate decision making. Figure 2a depicts the
flow of the mashup from incident detection till its decision
to either perform some Big Data analytics or take decisions
based on historical information. Figure 2b depicts the par-
allel execution of Big Data jobs, analysis of their results to
foster initiation of counter measures.

Start

Road Incident

Event Analysis

Decide

Big Data Jobs Execution

Check Past Decisions Decide

Ignore Incident

Email Alerts

(a) Road incidents trigger a mashup to initiate appro-
priate counter measures to handle traffic efficiently.

Find accidents Find peak hours

Start

Find fire breakage

Parallel Invocation

Asynchronous

Job Results

Decide Alert PoliceAlert Fire Department

Ignore Incident

(b) Deriving knowledge from Big Data analytic jobs to
facilitate decision making.

Figure 2: Mashup involving Big Data analytics for traffic
management. The diagram uses the standard flow chart no-
tation. The orange square boxes denote processes involving
business logic while the thick-bordered yellow square boxes
denote Big Data analytic jobs. The green diamonds de-
notes decision points and the blue parallelograms denote in-
put/output.

3.2 Mashup involving Big Data analytics for
travel route optimization

Public transportation is becoming increasingly tough in
most modern cities of the world today. It is desirous to know
real time traffic situations for smooth transit within different
areas of a city. Therefore the idea of connected mobility
is highly sought for. Connected mobility, an application of

IoT, takes into account all available transit options, payment
services along with real time traffic information and map
services to facilitate optimal route planning for hassle free
transportation.

The traffic conditions, payment services, parking spot avail-
ability, public transit options with their rates and historical
data are offered as REST services in the context of con-
nected mobility. Mashups can be used to create relevant
user applications by third party application developers by
consuming the offered REST services appropriately which
assist the user to travel from one point to another with in
the city limits. The application suggests the user to use a
combination of transit options, handles the entire trip cost in
an integrated manner since different services may have dif-
ferent providers. It also guides the user during its travel with
a map. The flow of such a mashup where real time analytics
is unavoidable is depicted in Figure 3. The application takes
user input and during first iteration it performs analytics to
get real time traffic information and then appropriately sug-
gest optimal routes with a combination of transportation
options which can be followed for those paths. This cycle is
iterated till the user is satisfied with the results after which
the flow in the application moves on to calculate the trip
cost, display it to the user, handle the payment through a
payment gateway and present the final itinerary to the user.

Start

Travel Details

Decide

Analytics to find best deals

Results

Pricing Bill

Payment Gateway

Itinerary

Re-confirmation

Figure 3: Mashup involving Big Data analytics for travel
route optimization.

4. INTEGRATION CHALLENGES AND
ROADMAP

Both the worlds of IoT and Big Data have their own focus
area. It is evident from the above scenarios that more value
can be generated on integration of these two worlds. Such
integration is a future direction for research as there are a lot
of challenges to be solved. In this section we have given the
current limitations of mashup tools and Big Data and then
enlist a concrete set of research directions for the community.

4.1 Challenges for Integration

Blocking execution and synchronous communication in
mashups.

Mashups developed in current mashup tools have block-
ing execution and synchronous communication semantics.
This effectively means that the execution cannot get trans-



ferred to the next component in a data flow before the logic
of the current component gets executed. This becomes a
limitation in cases where a mashup needs to run an ana-
lytic job in the background, while listening for further inputs
from various sources like HTTP, Message Queue Telemetry
Transport (MQTT) [16] etc. Since Big Data analytics jobs
are typically time-consuming, there is a clear need for non-
blocking semantics on the mashup that invokes it, so that it
can continue its operation, and for asynchronous communi-
cation between the Big Data analytics tools and the mashup,
so that the analytics results are consumed on the mashup
when they become ready.

Single-threaded mashups.
Since most mashup tools use JavaScript technologies for

application development and deployment, mashups devel-
oped with such tools are single-threaded. This can be a
serious limitation when a mashup involves the execution of
a number of Big Data analytics jobs, as in Figure 2b. In
such a case, invoking each of them in a separate thread
can speed up the execution of the data analytics part by
a factor equal to the number of jobs (assuming jobs with
same duration). Besides integration with Big Data analytics
tools, multi-threading in mashups would could be beneficial
in cases involving heavy database querying and/or file IO
where read or write latency is not negligible.

Visual Programming Limitations.
Mashup tools provide a graphical language for modeling

the data flow between the various components of a mashup.
This notation has its limitations when modeling complex be-
haviors that involve loops or generic operations [12, 13]. At
the same time, Big Data analytics tools have their own (non-
graphical) languages, such as Pig Latin and SQL/SparkSQL.
There are currently only a few attempts to specify Big Data
analytics jobs graphically (e.g. QryGraph tool for specifying
Pig Latin queries [15]). A seamless development experience
integrating mashup and Big Data analytics would ideally
provide a single notation for specifying both the application
logic and the data analysis logic in graphical editor (e.g.
allowing for graphically specifying the contents of ”Event
Analysis” box in Figure 2a). As this would allow develop-
ers to use a single consolidated toolchain, it would greatly
enhance their performance.

End-user focus in mashup tools.
Mashups tools have so far focused on enabling end-users,

even non-programmers, create and deploy relatively simple
mashups. As a result, a number of common features for de-
velopment environments and platforms, such as built-in se-
curity mechanisms and code generation capabilities, are not
included in current popular mashup tools. To allow the inte-
gration with Big Data analytics tools, mashup tools have to
provide these missing features, along with features included
in data scientists toolkits (e.g. pre-fetching of example data
from a data set, graphical inspection of data sets, etc.). In
the end, the challenge is to shift the focus from end-users to
developers and data scientists.

Lack of RESTful APIs for Big Data Analytics.
Mashups heavily rely on REST architectural style for com-

munication and integration between components because it

is simple and the communication is uniform. Uniform com-
munication is especially important in IoT due the seer pres-
ence of a large number of heterogeneous devices. This is an
opportunity for Big Data analytics tools: if they also offered
their APIs in REST, they could be invoked as regular ser-
vices within mashups. Certain Big Data tools already offer
RESTful APIs. For instance, in Spark one can invoke Spark
jobs, monitor and control them via REST calls. Unfortu-
nately, most other Big Data analytics tools (including Hive
and Pig) lack REST interfaces.

4.2 Research and Development Roadmap
Revisiting the challenges on the integration of mashup

with Big Data analytics tools, we present here a roadmap
with promising directions for research and development.

Enhancement of mashup tools.
Mashup tools should be enhanced in a number of direc-

tions. First, they should allow developers to create compo-
nents with non-blocking semantics and asynchronous com-
munication. Second, they should allow the specification of
multiple threads of operation for a single mashup. These
two points will make it possible to specify components that
incorporate Big Data analytics tasks, have their own lifecy-
cle and act as “callbacks” for receiving the analysis results
and propagating them to the rest of the mashup.

Third, mashup tools should incorporate visual program-
ming of not only the data flow in the system, but also of the
Big Data analysis jobs. This will allow seamless modeling
of applications such as the ones presented in Section 3.

Finally, mashup tools should provide support for both en-
terprise usage (security mechanisms, data generation, etc.)
and data science tasks, such as visual inspection of data sets.
This will facilitate their adoption both enterprise developers
and experienced data scientists.

Enhancement of Big Data analytics tools.
From the perspective of Big Data analytics tools, the main

prerequisite for their integration in mashups is that they
offer web APIs for controlling their operation and retrieving
analysis results. Since most mashup tools work out of the
box with APIs conforming to the REST style, it would be
beneficial for interfaces of analytics tools to conform to the
same style.

5. RELATED WORK
In this section we try to focus on works that have been

done in the past which heavily used Big Data in the con-
text of IoT. Interest to couple IoT and Big Data is quite
strong [17, 14].

CiDAP is a city data and analytics platform which aims
to collect live data from city, derive insights from the data
and make them available for use in applications [4]. This
includes both historical as well as real time data. It acts
as a middle layer between the data sources and the smart
applications. The data collected from various IoT sensors
is stored in Big Data repository. The collected data is sub-
jected to transformations, the simple processing tasks are
handled by the Big Data repository itself. For more exten-
sive analytic jobs a dedicated processing component is used
which is based on Spark. The results are fed to a server
which handles the queries of the smart applications with



the help of a set of APIs.
A software architecture has been defined to collect sensor

based data in the context of IoT, a prototypical example of
Big Data [3]. The architecture aims to take heterogeneous
devices into consideration along with reconfiguration capa-
bilities and scalability. The processed data and the result
of analytics on data is made available as a service. The ar-
chitecture has four major components like sensors, sensor
boards, bridge and the middleware. Bridge is responsible
to aggregate streams of data from sensors connected to dif-
ferent sensor boards. The middleware provides distinct set
of APIs to send data to storage and interact with collected
data sets. The middleware is responsible to support data
collection and broadcasting the configuration of sensors to
the bridge. It houses the global sensor configuration along
with measured data sets.

An architecture has been proposed on how to analyze Big
Data in the context of IoT [7], dealing with collection, ag-
gregation and processing of massive volume of data. In this
architecture, the acquisition component handles acquiring
health data from 6LoWPAN sensors attached to the human
body. To efficiently analyze the data, the raw data pro-
cessing component processes the data. Some preliminary
tasks like data integration, data cleaning, and data redun-
dancy elimination are applied and the data is collected in
the form of blocks. The Data Aggregation and Storage De-
vice deals with aggregation of data in the form of a data
block. The storage system work as decision model in this
architecture. The storage system checks whether the data
is real-time data or offline data. In case of real-time data,
the data is transmitted to a filtration system to remove un-
wanted data. If the data is offline data, the data is sent to
the storage server. The storage server provide storage ca-
pabilities, shares the massive volume of data, and helps in
equal distribution of data among various processing server.
The decision-making unit is the final component which con-
sists of fusion results storage device, and the decision-making
server. When the results are ready for compilation, the data
fusion server sends their results to the result aggregation
unit in Hadoop processing server. Fusion result storage de-
vice helps in storing the results to be used in future. The
decision-making server makes use of various decision-making
algorithm to derive insights from the data.

6. CONCLUSION
In this paper, we have argued for the need for a deeper

integration of Big Data analytics in mashup tools. We be-
lieve this will allow for advanced consolidated tooling that
supports the seamless development of mashups that include
data analysis tasks as part of their business logic. In this
direction, our goal in this paper was to (i) highlight the need
for full integration of Big Data analytics with IoT mashup
tools via concrete examples, (ii) present the challenges such
an integration entails, and (iii) provide a research and de-
velopment roadmap with concrete directions forward. We
aim to work on each of the items of the presented roadmap,
starting from lifting the limitations of existing mashup tools
that stand in the way of integration with Big Data analytics.

Acknowledgments
This work is part of the TUM Living Lab Connected Mobil-
ity (TUM LLCM) project and has been funded by the Bavar-

ian Ministry of Economic Affairs and Media, Energy and
Technology (StMWi) through the Center Digitisation.Bavaria,
an initiative of the Bavarian State Government.

7. REFERENCES
[1] K. Akpinar, K. A. Hua, and K. Li. Thingstore: A platform

for internet-of-things application development and
deployment. In Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems, DEBS
’15, pages 162–173. ACM, 2015.

[2] C. Cecchinel, M. Jimenez, S. Mosser, and M. Riveill. An
architecture to support the collection of big data in the
internet of things. In IEEE World Congress on Services,
pages 442–449, June 2014.

[3] C. Cecchinel, M. Jimenez, S. Mosser, and M. Riveill. An
architecture to support the collection of big data in the
internet of things. In IEEE World Congress on Services,
pages 442–449, June 2014.

[4] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs.
Building a big data platform for smart cities: Experience
and lessons from santander. In IEEE International
Congress on Big Data, pages 592–599, June 2015.

[5] F. Daniel and M. Matera. Mashups: Concepts, Models and
Architectures. Springer Berlin Heidelberg, 2014.

[6] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller. A
survey of commercial frameworks for the internet of things.
In ETFA, pages 1–8, Sept 2015.

[7] S. Din, H. Ghayvat, A. Paul, A. Ahmad, M. M. Rathore,
and I. Shafi. An architecture to analyze big data in the
internet of things. In ICST, pages 677–682, Dec 2015.

[8] J. Kim and J. W. Lee. Openiot: An open service framework
for the internet of things. In Internet of Things (WF-IoT),
pages 89–93, March 2014.

[9] R. Kleinfeld, S. Steglich, L. Radziwonowicz, and C. Doukas.
glue.things: A Mashup Platform for wiring the Internet of
Things with the Internet of Services. In Proceedings of the
5th International Workshop on Web of Things, WoT ’14,
pages 16–21. ACM, 2014.

[10] N. Marz. Big data : principles and best practices of scalable
realtime data systems. O’Reilly Media, 2013.

[11] A. Pintus, D. Carboni, and A. Piras. Paraimpu: a platform
for a social web of things. In Proceedings of the 21st
international conference companion on World Wide Web,
pages 401–404. ACM, 2012.

[12] C. Prehofer and L. Chiarabini. From Internet of Things
Mashups to Model-Based Development. In COMPSAC,
2015 IEEE 39th Annual, pages 499 – 504. IEEE, July 2015.

[13] C. Prehofer and D. Schinner. Generic operations on restful
resources in mashup tools. In Proceedings of the 6th
International Workshop on the Web of Things, WoT ’15,
pages 3:1–3:6. ACM, 2015.

[14] L. Ramaswamy, V. Lawson, and S. V. Gogineni. Towards a
quality-centric big data architecture for federated sensor
services. In IEEE International Congress on Big Data,
pages 86–93, June 2013.

[15] S. Schmid, I. Gerostathopoulos, and C. Prehofer. Qrygraph:
A graphical tool for big data analytics. In SMC’16, Oct
2016.

[16] D. Thangavel, X. Ma, A. Valera, H. X. Tan, and C. K. Y.
Tan. Performance evaluation of mqtt and coap via a
common middleware. In IISSNIP, pages 1–6, April 2014.

[17] J. Zhang, B. Iannucci, M. Hennessy, K. Gopal, S. Xiao,
S. Kumar, D. Pfeffer, B. Aljedia, Y. Ren, M. Griss,
S. Rosenberg, J. Cao, and A. Rowe. Sensor data as a
service – a federated platform for mobile data-centric
service development and sharing. In IEEE SCC, pages
446–453, June 2013.


