
Always-On Web of Things Infrastructure
using Dynamic Software Updating

Martin Alexander
Neumann

Christoph
Tobias Bach

Andrei Miclaus Till Riedel Michael Beigl

Karlsruhe Institute of Technology
Vincenz-Priessnitz-Str. 1

Karlsruhe, Germany
{firstname.lastname}@kit.edu

ABSTRACT
Applications in the Internet of Things require security, high
availability and real-time communications for reliable oper-
ation. But their software contains issues that need to be
fixed. Timely installation of software updates allows secur-
ing vulnerable software quickly but conventionally disrupts
availability and communications. Rolling update schemes
prevent disruptions, but have to be performed carefully.

Dynamic software updating significantly shortens the in-
stallation duration of updates by implementing them in-
memory, allowing timely hot fixing and installation of new
features without service disruption or degradation in soft
real-time communications. As the Web of Things settles on
common technologies, we see the need for quick hot fixing
of security vulnerabilities in widespread components.

To demonstrate the benefits, we present a case study in
which the moquette message broker has been retrofitted for
dynamic updating with our update system. We provide dy-
namic patches for all three releases of moquette and per-
form these updates on moquette at saturated load stressed
by a 1:10 fan-out benchmark with 100 simulated publishers.
While no connections or messages are lost, it demonstrates
that the throughput drops only for 1-2s and that average
message latency peaks up to 1000ms during this time.

1. INTRODUCTION
Today, things are becoming intelligent using a wide range

of technologies and platforms, forming the Internet of Things
(IoT). To simplify intelligent thing development and interop-
erability in an evolving heterogeneous ecosystem of IoT tech-
nologies, the Web of Things (WoT) sets out to streamlining
these potentials by settling on a common set of technologies
that simplifies interoperability between varying IoT plat-
forms and technologies. The Web of Things (WoT) enables
device mashup and system integration by promoting web
communication, platform and language standards that pro-
vide a robust, efficient and flexible application layer to devel-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

c© 2016 Copyright held by the owner/author(s).

opers [8]. It integrates heterogeneous devices, ranging from
micro-controllers to cloud-based highly-scalable servers, and
heterogeneous communications, ranging from small-band-
width unreliable wireless links to high-bandwidth and robust
cable links. Prominent standards and technologies for seam-
less interoperability in the WoT stack are for example HTTP
(reliable client-server connections), REST (scalable commu-
nications), JSON (extensible marshalling), JSON-LD (type-
safe marshalling and efficient device semantics) or WebSock-
ets, CoAP and MQTT (efficient communications).

While things become more intelligent, the relevance of
software in defining the value of things increases and the
software system becomes more distributed and complex. As
any other software, the software of these things and their
infrastructure needs to be updated in the field, either to fix
bugs and security features, or to add new features and im-
prove the user experience. Updating the large number of
devices in the Internet of Things timely and securely has
been identified as an important issue [11]. For example, a
recent two-week delay in fixing a bug in the smart nest ther-
mostat prevented heating in homes during winter1.

In most use cases, e.g. when connecting vehicles, there
is always work to do at the infrastructure, raising real-time
communications and high-availability needs. Although up-
dating cloud and edge devices is considered easier than large-
scale resource-constraint devices [2], we argue that updating
the software in the cloud and on edge devices is still challeng-
ing in face of these real-time and availability requirements.

In this paper, we present Dynamic Software Updating
(DSU) as an approach for updating core components in the
Web of Things. It uniquely enables timely and seamless up-
dating, featuring updating of highly available and real-time
communications systems. The goal of DSU is to produce
results equivalent to conventional updating but performing
updates at runtime in the applications’ memory to speed up
the installation significantly. Timely means that providers
can immediately push security fixes or new features into the
systems without having to wait for scheduled maintenance
windows or wait for the initiation and completion of care-
fully designed rolling updates or big flips (see [4]).

Timely updating is vital to large systems incorporating
many components with similar software stacks, such as the
Web of Things, to make it practically secure against ex-
ploitation of vulnerabilities. Scheduled maintenance for per-
forming conventional updates (fast reboot) allows straight-

1http://goo.gl/GIK3tk

forward update installation but disrupts the system, which
we think is hardly an option with smart devices being widely
adopted and integrated into business systems and processes
and alike. In contrast, big flips or rolling updating allows
non-disruptive installation of updates to redundant systems
behind a load balancer, but it has to be designed carefully
to prevent crashing the system during the stretched up-
date period in which both programs versions are running
[1]. In addition, the software update must be backwards-
compatible to allow interaction between old and new pro-
gram version while both versions are running concurrently
during the rolling update schedule [4]. DSU provides a sim-
pler update installation procedure as it does not require
such backwards-compatibility or complex update scheduling
when installing updates to multiple machines.

Seamless updating means that the update is low-disruptive
to machine-to-machine communications, especially real-time,
and to user interactions, even at highly saturated load. Up-
dates can be performed at any time and do not have to be
postponed to situations of low load. The goal of the DSU in-
stallation procedure is to perform maintenance for hot fixing
and larger updating of distributed machines that lasts very
shortly and therefore can be scheduled immediately as it
does not disrupt runtime as regular scheduled maintenance.

We firstly discuss software updating for the different kinds
of devices in the Internet of Things and related work in Sec-
tion 2. Afterwards in Section 3, we present a healthcare
monitoring setting and present our version of the moquette
MQTT broker which has been enhanced for dynamic up-
dating (on our Java DSU system Lusagent. The case study
demonstrates programming efforts for enabling timely and
seamless dynamic updates. In Section 4, we evaluate the
effects on message throughput and latency when updating a
moquette instance while the it is stressed by a benchmark.

2. UPDATING THE INTERNET OF THINGS
Communication of smart objects is differentiated into two

models: device-to-device (e.g. over Bluetooth or ZigBee),
device-to-cloud (e.g. over IPv4). The latter may be ex-
tended into device-to-gateway in which gateways close to
the devices proxy access between cloud services and devices
which are short on resources [3]. Gateways enhance secu-
rity, provide protocol translation for efficiency, and provide
caching of device state to lower stress on devices.

Software on devices, gateways and cloud services requires
updating to fix bugs and provide new features. Security
patches to widespread components, such as secure communi-
cations libraries, are particularly important to deploy quickly
as large parts of a system become vulnerable to the same is-
sue when a vulnerability is disclosed. This is challenged by
uptime-sensitive services leading to delayed installation and
long periods of vulnerability. For example, in case of the
heartbleed bug, a duration of 2 weeks has been estimated
for its fix to reach 50% of the vulnerable web servers in the
public IPv4 space which amounted to 5% of all IPv4 web
servers [6]. The timely installation of security patches is
an important issue in software updating already today, with
such common technologies and implementations being de-
ployed at large-scale. This issue is becoming more relevant
with the increase of adoption of common implementations in
the context of the Web of Things, raising the need for mech-
anisms for timely updating of all three kinds of devices.

2.1 Gateways
Large applications with integrated smart objects, espe-

cially interactive ones such as payment or health monitor-
ing, require their gateways and cloud services to be highly
available for uninterrupted operation and provide real-time
communications. But updating software on gateways usu-
ally requires to shut them down as they are designed for
cost-efficiency and are usually not featuring live updating,
e.g. by a redundant design with a hot standby. For fast con-
tinued operations, critical state is persisted before shutdown
and reloaded after restart. Even though it may not challenge
availability as the state is rather small, it may still challenge
real-time communications. Established communications are
usually dropped on shutdown and have to be re-established
afterwards which adds to the time for persisting and reload-
ing state. Shutdown may also mean that state may become
invalid and is thrown away and reacquired after restart, es-
pecially, if caches are flushed and have to be warmed up
again in usual application operation.

2.2 Cloud Services
Updating software on cloud services may either induce

downtime at non-redundantly designed systems or maybe
enabled hot by rolling updates or application-specific solu-
tions. Rolling updates extend the idea of reliable comput-
ing of switching to a hot standby at runtime: such updates
low-disruptively switch to a seperate instance of the new
program version whose state has already been warmed-up.
In contrast to dynamic updating, real-time communications
may be challenged by re-establishing (or re-routing) con-
nections to the warmed-up instance. Furthermore, rolling
updates require backwards-compatibility of any updates to
the application and careful distributed update scheduling.
This is also the reason why this scheme is generally found
rather complex to get right [5].

Alternatively, application-specific approaches to live up-
date the parts of an application that make a conventional up-
date take time could be adapted to speed up updating. For
example, Facebook’s version of memcached is a prominent
example that migrates the cache content hot between pro-
gram versions, effectively hot-swapping the program around
cache [12]. Such schemes head towards generic DSU sys-
tems by using dynamic updating techniques to perform time-
intensive parts of off-the-shelf updates in-memory.

2.3 Dynamic Software Updating
DSU systems go a step further in providing generic updat-

ing services to an application to update parts of it in-memory
[10]. Such systems stop the control-flow in program parts
affected by an update, transform control-flow and state to
the new version and afterwards release the control-flow in
the new version. Systems try to provide safety properties
such that performed transformations at the point where the
control-flow has been stopped are correct–usually forms of
type safety such that no transformations or new program
code may interact with any unknown/old types [18].

Entire-program DSU offers tested and efficient generic up-
dating features that aim for high update flexibility in allow-
ing performing any update to any part of a running pro-
gram. It may complement application-specific updating ap-
proaches or be used as a standalone feature for new appli-
cations or be retrofitted into off-the-shelf applications. The
high flexibility aimed for in the provided generic mechanisms

may be less efficient than tuned application-specific solutions
(e.g. compared to Facebook’s version of memcached) but it
still is a good complement offering to update even those
parts the application-specific ones do not.

Besides such flexibility, DSU systems try to be timely in
performing updates right away when updates are released.
But entire-program DSU systems offering such flexible and
timely updates usually require programming: timely updat-
ing requires an application to be instrumented to reach a safe
point for updating quickly when an update is available [9],
and flexible updating requires update code to implement the
transformations in-memory which are required. But when
regarding that such instrumentations and update codes have
to be developed for wide-spread applications in the context
of the Web of Things, we think, that the necessary efforts
outweigh the benefits: any instances on the Internet could
be updated immediately without added rolling complexity
and affecting real-time communications only little.

2.4 Smart Objects
Smart objects, i.e. small devices with severe constraints

on power, memory, and processing (in the RFC 7228 classes
0 to 2), could also benefit from the dynamic updating ap-
proach. But as the individual devices usually carry little
transient state and keep only few active connections at a
time, conventional updating (i.e. fast reboot) is likely to be
sufficient. Updating a resource-constraint device over-the-
air in the field means to download a new firmware while the
old one is still running, to shut down the old, install the
new using a bootloader and restart the firmware [14]. Criti-
cal state may be written to NVRAM before updating and be
quickly reloaded afterwards, and the few disconnected con-
nections are likely less of a challenge to real-time communi-
cations from a device perspective. If many devices update
simultaneously, the burst of disconnecting and reconnecting
devices is more relevant to handle at the infrastructure.

This procedure is quite fast such that major concerns on
this device type are functional updating (i.e. to not “brick”
the device) and secure updating (i.e. to prevent installing
tampered-with software). This is for example addressed by
updating on a finer granularity of components that allows
reverting a component update in case of failure, and by veri-
fication of cryptographic signatures on downloaded binaries
[7]. Another challenge is to simultaneously update many
of such distributed devices. They may be connected to the
infrastructure by links of differing quality, maybe even via
challenged networks, which challenges to distribute an up-
date and to coordinate evolving the program version in lock-
step [14]. They may be used in a many-tenant scenario such
that legal and ethical issues (e.g. user veto’s[17]) also have
to be taken into account. Updates may even be complex and
distributed requiring standardization for coordination [16].

3. CASE STUDY: MESSAGE BROKER
Envision a setting in which numerous sensors send their

data to one or many message brokers frequently as shown
in Figure 1. For example, in a hospital healthcare scenario,
hundreds to thousands of patients are monitored simultane-
ously. Patients might be in-house, at home or on the road.
Their vital signs are continuously tracked at high frequency
and reported into the hospital infrastructure via gateways.
Depending on the use case the data dropped off in bulk loads
infrequently, e.g. in case of long-term heart rate or blood

pressure diaries, or each taken measurement is uploaded in-
stantly, for example, to analyze collapsing patients.

Figure 1: Schematic of Dynamic Updating Case Study

Moquette.
We suppose the scenario be driven by one to many MQTT2

message brokers providing reliable real-time communications.
Moquette3 is a MQTT message broker of about 8k Lines of
Code (LoC) in pure Java, implementing MQTT v3.1. Mo-
quette has three releases so far: 0.7 in 2015 and 0.8 and 0.8.1
in 2016. We have instrumented these three and we provide
update code for updating 0.7→ 0.8 and 0.8→ 0.8.1 dynam-
ically4. DSU is performed while Moquette is benchmarked
by our custom MQTT fan-out benchmark. The DSU pre-
serves all in-flight messages and client connections. Correct
DSU is validated by successful completion of the benchmark.

Lusagent DSU.
With our Java DSU system Lusagent, the programmer

has to take care of two DSU related tasks: firstly, to in-
strument the vanilla application with control-flow migration,
and secondly, to implement update code for state migra-
tion on every update to the application. The control-flow
API is adopted from the DSU system Rubah, as illustrated
in [15]: by replacing the application threads by specific
Lusagent threads and instrumenting the application with
update points that unwind the stack before update and re-
build it after update, this approach offers to update any code
of an application, especially long-running methods. The pro-
grammer places update points to ensure timely initiation of
an update: they have to be inserted such that all threads
visit any of them frequently. The API is also used to make
sleeps, networking and file I/O interruptible by updates.

3.1 Dynamic Update Instrumentation
Moquette is an event-driven server using the netty IO li-

brary5 which is based on pipelines of different types of I/O
handlers. Its operation is characterized by short-lived trans-
actions of handling incoming MQTT messages in the context
of netty handlers and forwarding them to subscribers.

The control-flow instrumentation API of Lusagent con-
tains a generic factory that can be used to generate proxy
objects to any given interface. The proxies are implemented
by dynamically building Java proxy classes [13]. A proxy im-
plements all methods of the given interface and can proxy an
object implementing this interface to: by default, a gener-
ated proxy transparently forwards all method calls to the

2MQTT has been adopted in various open source and com-
mercial IoT platforms as it provides reliable fast messaging
with exactly-once delivery. Details: http://mqtt.org
3https://git.io/viHrE
4Our instrumented releases of moquette and update codes
are at: https://git.io/vPPCT and https://git.io/vPPWN
5https://netty.io

proxied object when no update is requested, and it acts
as a barrier to any call if an update is in progress. The
factory is used to add such update barriers in all netty IO
pipelines of Moquette to pause incoming netty events be-
fore updating. Moquette contains 4 of such pipelines, for
TCP, SSL, HTTP and HTTPS, which are all instrumented
by the identical change. Listing 1 shows an example for
the TCP pipeline. The required change consists of adding
line 2 and 9. In line 2 a proxy object is generated for the
ChannelInboundHandler interface which wraps a freshly cre-
ated ChannelInboundHandlerAdapter object. This object is
a default implementation of a pipeline processing step that
simply forwards to the next pipeline step. The wrapped
object is inserted in front of the netty pipeline in line 9.

As Moquette supports MQTT QoS 0, 1 and 2, it contains
an additional thread6 that is triggered regularly by a timer
to push the world forward. This thread’s super class has
been changed from java.lang.Thread to lus.LusThread

which allows the DSU system to wait for the thread’s com-
pletion before update. There is no additional instrumenta-
tion of this code to make this thread quickly reach a safe
state as it is never performs long-running operations.

The control-flow of the three moquette releases have been
instrumented by quite similar patches adding 11 and delet-
ing 1 line (in versions 0.8 and 0.8.1) respectively adding 19
and deleting 3 lines (in version 0.7). In addition, to allow
successful transformation of program state in the update
code in the following section, two classes from version 0.7
for handling MQTT messages using the have been copy-
and-pasted as inner-classes into the code of 0.8–this part of
the patch amounts to 91 added and 7 deleted lines.

3.2 Dynamic Update Code
We have implemented update code in the Java-like lan-

guage of our DSU system for transforming the program state
at runtime from 0.7 → 0.8 and 0.8 → 0.8.1. The language
allows to handle classes and objects from the old and new
program simultaneously in code to access old and new fields
and methods: the programmer can transform values and call
functions, e.g. to perform an initialization sequence.

As just mentioned, two classes had to be manually copied
from 0.7 to 0.8 to allow state transformation at runtime
between these two versions. The 0.8 release changes the
handling of MQTT messages in moquette. In consequence,
the update code for 0.7→ 0.8 is considerably larger than the
update code for 0.8→ 0.8.1 (237 vs. 33 LoC). We think that
both updates are manageable and summarize their operation
in the following, starting with the shorter update code.

The programmed code works in the context of the follow-
ing: when the code is executed all new classes have already
been loaded and their static initializations have been exe-
cuted. The programmer may disable class-initialization on
a per-class basis though. Furthermore, after automatic in-
tialization, all values of old class fields that are also existing
in the new program version get their values automatically
copied over. In this step, values of fields deleted in a class
are not copied and must be manually migrated by the pro-
grammer. New fields do not get a value copied over but keep
their value after class-initialization. The programmer may

6It’s a java.lang.Thread in releases 0.8 and 0.8.1. In ver-
sion 0.7, this part is an event handler using the LMAX dis-
ruptor messaging library (https://git.io/viQtD)–this has
been instrumented analogously to the netty pipeline.

disable class-copy on a per-class basis though.
Furthermore, all values of old object fields that are also

existing in the new program version get their values auto-
matically copied over. This cannot be disabled. Values of
deleted object fields are analogously not copied over and new
fields are initialized by generic defaults defined by the DSU
system: primitive numbers are set to 0, primitive booleans
are set to false and object references are set to null.

3.2.1 Update Code 0.8 to 0.8.1
This update code (1) copies values of two object fields

in the class moquette.SubscribeMessage$Couple that have
been renamed, (2) it changes the location (i.e. object field)
in which the moquette.NettyChannel of a client session is
stored, (3) it copies a few string constants from the old into
the new version which are used as keys in hash-maps (the
strings in old and new version are equal() but not the same
instance), and (4) it disables the static initializers of 4 classes
in which the automatic class initialization fails as these ini-
tializers construct singleton objects which fails if the single-
ton has already been constructed in the old program.

3.2.2 Update Code 0.7 to 0.8
This release update changes the namespace of the project

from org.eclipse.moquette to io.moquette: the update
code renames the classes accordingly. Furthermore, the netty
pipelines on the asynchronous communication channels have
changed in this release. Therefore, the update code iter-
ates all moquette.NettyChannel objects and modifies the
pipelines accordingly. The message handling code has been
redesigned in moquette in general, which is cared for by the
large part of this update code. In the old version a com-
bination of a LMAX disruptor ring-buffer and a MapDB7

database are used to dispatch and store message objects.
The message objects in 0.8 have changed their structure and
their handling has been moved stronger into MapDB drop-
ping the attached ring-buffer. The transformer uses about
150 LoC to read the messages in the old ring-buffer and
the old MapDB, transform them into their new format, and
finally, store them in the new MapDB instance.

4. EVALUATION
We evaluate the dynamic updating capability of our DSU-

retrofitted version of moquette by measuring the impact of
release-level updating on throughput and latency of MQTT
messages. Our results are preliminary in that we have per-
formed an experiment only with DSU on moquette to study
its characteristics. We have not yet performed a conven-
tional update (fast reboot) for baselining.

Figure 2: Moquette Benchmark Setting

7http://www.mapdb.org/

1 private void initializeTCP(IMessaging messaging, Properties props) throws IOException {

2 final ChannelInboundHandler lus = LusProxy.create(new ChannelInboundHandlerAdapter(),

ChannelInboundHandler.class);↪→

3 final NettyMQTTHandler handler = new NettyMQTTHandler();

4 // ...

5 initFactory(host, port, new PipelineInitializer() {

6 void init(ChannelPipeline pipeline) {

7 // ...

8 pipeline.addLast("handler", handler);

9 pipeline.addFirst(lus); // Ensure that this lus-barrier is in front of pipeline

10 });

11 }

Listing 1: Example of Moquette Control-Flow Instrumentation in org.eclipse.moquette.server.netty.NettyAcceptor

Our benchmarking setting is implemented in a custom
script and is depicted in Figure 2: 100 sensors are simu-
lated continuously transmitting MQTT messages at fixed
rate onto the same topic of the moquette instance. Each sen-
sor finishes transmission after sending 10k messages. Each
message carries 128 bytes payload also containing the times-
tamp of their emission. 10 clients are subscribed onto the
same topic, such that each incoming messages is fan out by
factor 1 : 10. All messages are sent and received at QoS level
2. All sensors, moquette and all subscribers are executed on
the same workstation to share a common wall clock.

All sensors are equally rate-limited (1) to keep all CPU
cores at saturated load to allow measuring all work necessary
for dynamic updating in message throughput and latency,
and (2) to keep in-flight messages in moquette at a stable
level such that all transmitted messages in our benchmark
expose quite short latencies and any negative impact on la-
tency due to dynamic updating becomes evident. Keeping
the number of in-flight messages at a stable level in mo-
quette prevents their steady increase during the benchmark
which would otherwise change the performance behavior in
our fan-out setting considerably over time during the bench-
mark. The more messages are in-flight, the higher latencies
in delivering MQTT messages become in the broker, and it
eventually makes its performance collapse due to high mem-
ory pressure. The setting’s goal is to stress moquette under
normal operation without overloading it.

The performance experiments ran on a workstation with
an Intel i7-2600 CPU (64-Bit SMP, 4 cores) at 3.4 GHz and
dual-channel 16 GiB of RAM at 1.33 Ghz (each channel
equipped with two 4 GiB modules). The workstation was
disconnected from any networks and the CPU’s dynamic
frequency scaling and hyper-threading have been disabled.
The machine ran 64-Bit Debian 4.5.3-2 (SMP support) and
Oracle Java 1.8.0 92. The JVM heaps were limited to 8 GiB.

4.1 Message Throughput
We measure messages delivered per second by moquette

to its subscribers (called throughput here) during the bench-
mark. At first, either moquette 0.7 (or 0.8) runs. Next,
the update to 0.8 (or 0.8.1) is performed. Afterwards, mea-
surements continue until the benchmark has finished. The
dynamic update causes a pause of the broker’s operation
which becomes evident in its message throughput over time.

Figure 3 shows the average throughputs during the bench-
marks. In both, at 10s the update is triggered and the

Figure 3: Message Throughput when Updating Moquette

throughput drops for about 1−2s. Afterwards, the through-
put returns to its previous level after a short increase from
95% → 100% to finish messages accumulated during the
dynamic. The increase for about 1-2 for the small patch
(0.8→ 0.8.1) and about 7−8 for the large patch (0.7→ 0.8).

Even though clients keep sending at fixed-rate during the
update, the throughput is only negatively affected for a rel-
atively short period of time, only for the time the dynamic
update lasts, and afterwards quickly climbs back to its pre-
vious performance. The experiment demonstrates this for
the worst case of normal operation.

4.2 Message Latency
To assess how the dynamic update affects the latency of

the messages coming in while moquette is paused, and thus
how it affects real-time communications (also when the bro-
ker is heavily loaded), we have also measured message end-
to-end latency. All messages sent by the sensors are stamped
by the global wall clock, whenever a subscribes receives a
message, the message and its latency are tracked in a log.

Figure 4 shows the average of latencies over a sliding win-
dow of 1000ms with step size of 100ms during the bench-
marks when updating moquette 0.7→ 0.8 and 0.8→ 0.8.1.
This window size and step size samples the messages de-
layed during the update quite well as the pause for dynamic
updating in our benchmarks lasts between 500ms to 700ms.

In both figures, at 10s the update is triggered and the av-
erage latency shortly peaks for about 1-2s and immediately
returns to its previous level. In contrast to the previous
throughput measurements, no significant difference in aver-

Figure 4: Message Latency when Updating Moquette

age latency before and after update are visible in updates
0.7→ 0.8 and 0.8→ 0.8.1. We think this demonstrates the
potential of DSU for timely and low-disruptive updating of
infrastructure components in the Internet of Things (which
also has requirements on real-time communications besides
high-availability on its cloud services).

5. CONCLUSION
We have discussed that applications in the Web of Things

require timely hot fixing of core components while these
also provide high availability and real-time communications.
Timely installation of software updates allows securing vul-
nerable systems quickly but conventionally disrupts avail-
ability and in consequence communications. Dynamic up-
dating has been presented as an approach significantly short-
ening the installation duration of updates to cloud services
and gateway software by implementing them in-memory.

Dynamic updating requires programmers to implement
additional update code on every regular update. But as the
Web of Things sets out on settling on common standards
and technologies we have argued that the low-disruptive up-
dating benefits outweigh the programming efforts necessary:
update code is implemented once per update and immedi-
ately applicable to a large number of installations. In a case
study on the moquette message broker retrofitted for dy-
namic updating, our benchmarks demonstrate the benefits
of this approach to for systems serving many clients.

Acknowledgments
This research has been partially funded by the German Fed-
eral Ministry of Education and Research as part of the UHUS
project (grant no. 01IS12051).

6. REFERENCES
[1] S. Ajmani, B. Liskov, and L. Shrira. Modular Software

Upgrades for Distributed Systems, pages 452–476.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[2] J. Arkko. Architectural Considerations with Smart
Objects and Software Updates. In Internet of Things
Software Update Workshop (IoTSU), Dublin, Ireland,
Mar. 2016.

[3] L. Atzori, A. Iera, and G. Morabito. The Internet of
Things: A Survey. Comput. Netw., 54(15):2787–2805,
Oct. 2010.

[4] E. A. Brewer. Lessons from Giant-Scale Services.
IEEE Internet Computing, 5(4):46–55, July 2001.

[5] T. Dumitraş and P. Narasimhan. Why do upgrades
fail and what can we do about it?: Toward
dependable, online upgrades in enterprise system. In
Proceedings of the 10th ACM/IFIP/USENIX
International Conference on Middleware, Middleware
’09, pages 18:1–18:20, New York, NY, USA, 2009.
Springer-Verlag New York, Inc.

[6] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman,
M. Bailey, F. Li, N. Weaver, J. Amann, J. Beekman,
M. Payer, and V. Paxson. The matter of heartbleed.
In Proceedings of the 2014 Conference on Internet
Measurement Conference, IMC ’14, pages 475–488,
New York, NY, USA, 2014. ACM.

[7] J.-P. Fassino. Secure Firmware Update in Schneider
Electric IOT-enabled offers. In Internet of Things
Software Update Workshop (IoTSU), Dublin, Ireland,
Mar. 2016.

[8] D. Guinard, V. Trifa, and E. Wilde. A Resource
Oriented Architecture for the Web of Things. In
Proceedings of Internet of Things 2010 International
Conference (IoT 2010), Tokyo, Japan, Nov. 2010.

[9] C. M. Hayden, E. K. Smith, E. A. Hardisty, M. Hicks,
and J. S. Foster. Evaluating dynamic software update
safety using systematic testing. IEEE Trans. Softw.
Eng., 38(6):1340–1354, Nov. 2012.

[10] M. Hicks and S. Nettles. Dynamic software updating.
ACM Trans. Program. Lang. Syst., 27(6):1049–1096,
Nov. 2005.

[11] M. Kovatsch, A. Scholz, and J. Hund. Why software
updates are more than a security issue. In Internet of
Things Software Update Workshop (IoTSU), Dublin,
Ireland, Mar. 2016.

[12] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling memcache at facebook. In Proceedings of the
10th USENIX Conference on Networked Systems
Design and Implementation, nsdi’13, pages 385–398,
Berkeley, CA, USA, 2013. USENIX Association.

[13] Oracle. Java SE Specification. WWW page, 2014.
https://docs.oracle.com/javase/8/docs/api/

java/lang/reflect/Proxy.html.

[14] M. Orehek. Summary of existing firmware update
strategies for deeply embedded systems. In Internet of
Things Software Update Workshop (IoTSU), Dublin,
Ireland, Mar. 2016.

[15] L. Pina, L. Veiga, and M. Hicks. Rubah: DSU for Java
on a Stock JVM. In Proceedings of the 2014 ACM
Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’14, pages
103–119, New York, NY, USA, 2014. ACM.

[16] N. Smith. Toward A Common Modeling Standard for
Software Update and IoT Objects. In Internet of
Things Software Update Workshop (IoTSU), Dublin,
Ireland, Mar. 2016.

[17] R. Sparks. Avoiding the Obsolete-Thing Event
Horizon. In Internet of Things Software Update
Workshop (IoTSU), Dublin, Ireland, Mar. 2016.

[18] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and
I. Neamtiu. Mutatis mutandis: Safe and predictable
dynamic software updating. ACM Trans. Program.
Lang. Syst., 29(4), Aug. 2007.

