
Semantic Web Based Context-Adaptable Generation of
Product Specific Documentation

Andrei Miclaus
TECO, Karlsruhe Institute of

Technology (KIT)
miclaus@teco.edu

Till Riedel
TECO, KIT

riedel@teco.edu

Jack Unseld
TECO, KIT

unseld@teco.edu

Michael Beigl
TECO, KIT

michael.beigl@kit.edu

ABSTRACT
As users and developers have started to put the Internet of
Things to good use, the approach of documenting applica-
tions has not evolved to handle the created complexity. As
items, devices and systems become more customizable and
adapted to their users, their documentation still lags be-
hind. In particular, documentation covering the contextual
behaviour and specific configuration of artifacts is needed.

We design a system that leverages semantic web technologies
to create smart documentation on the basis of model based
system descriptions and heterogeneous data sources, which
are needed to create valuable and up-to-date documentation.

Based on two scenarios we show the benefits for both the de-
velopment cycle and the user experience of Web of Things
applications. The paper presents a mashup of Internet of
Things, model driven development, semantic web and HTML5
MVC technologies for generating context-sensitive documen-
tation.

1. INTRODUCTION
An increasing number of smart, mashable and customizable
devices reach the market. While traditionally, systems were
built from single vendor components, more and more end-
users create their own systems from heterogeneous devices
and software to fulfill their needs. The final product is thus
created by the user.

Unfortunately, in such complex interaction patterns even a
single component becomes increasingly difficult for a human
to understand and configure. Taking the example of end-
user installed home automation systems it can be shown
that the overall conceptual model plays an important role
in user acceptance when setting up such systems [3]. Sub-
sequently, documentation packaged with the devices would

need to provide appropriate information. However, today’s
documentation cannot take the current application context
and user experience into account and thus fails to provide
appropriate support [2].

Furthermore, product manufacturers also need to deal with
the increasing complexity of the product documentation when
delivering pre-customized items. Often they burden users
to make sense of a documentation describing entire product
families instead of the product variant they acquired.

User

Data Resource Mashup

Configuration

Feedback

THINGS

Developer

Smart	
 Template	

Gear	

Rims	

Fram
e	

Bike	

Context	
 Model	
 Text	

Descrip5ons	

Context	
 adapted,	
 up-­‐to-­‐date	

Informa5on	

Documents

Instant	

Help	

Semantic web Membrane (Adapter) Change
Notifications

Figure 1: Interaction with the context-adaptable
document generation system.

To address this problem, we envision a document generation
system that creates a data mashup from different resources
according to smart documentation templates. As seen in
Figure 1, the developer configures the smart template in-
stance, providing data source locations for a specific prod-
uct. The smart template in turn queries the data sources
using semantic web technologies and generates the up-to-
date documentation. Using notifications, re-generation of
the documentation can be automatically triggered when un-
derlying data sources change. A recent study showed that
such document generation may bring a further benefit: users
will read the documentation more carefully than a static one

if they are told that it is personalized and suited to their cur-
rent needs [12].

The presented system is designed to create personalized,
specifically tailored system documentation. This allows do-
main experts to control the information passed onto the user,
whilst allowing an automated update of the data contained
in the document based on system models.

In this paper we present the scenarios from which we de-
rive the requirements and describe the underlying system
architecture and its interfaces to the human and machine
users. For this we adhere to WoT practices [6] by employ-
ing RESTful services that exchange semantic enhanced data
like JSON-LD. We show how different existing technologies
can be combined to create smart documentation mashups.

2. RELATED WORK
Supporting users in their understanding of the system is
important. How a user perceives a system is dependent on
the presented information that helps form the conceptual
model in the user’s mind. This conceptual model plays a key
role in installing and using such a system and subsequently
influences the user experience [3].

A recent study in a home automation scenario evaluates how
participants respond to generated documentation when con-
fronted with a home automation system installation [12].
The authors, however, focused on the study without provid-
ing technical details as to how the documentation is gener-
ated. In this paper we wish to describe the design and imple-
mentation of the concept and describe how this system can
generate the installation documents. The study also showed
that users belonging to a younger generation mostly ignore
description documents and wish to rely on their smartphone
to interact with systems [12]. Providing documentation in
multiple modalities and at the right time on their devices
may speed up the understanding of the system and improve
the user experience.

Providing automated assistance in the augmented reality do-
main, the augmented reality manual automatically adapts to
the user and the current state of the installation [14]. The
authoring process is automated by using video recordings of
a physical task. However, textual descriptions which can aid
in the understanding of the task need to be manually added.
Using our system, a repository may be queried to supply the
automatic authoring process with additional textual docu-
mentation or images based on the currently identified task.

Industrial software product lines present a similarly difficult
challenge for documentation because of their high degree
of complexity and customization. The DOPLER approach
aims to support the creation of documents by using flexi-
ble product line variability models [5]. The tool focuses on
aggregating knowledge into the system for generation pur-
poses. However, we wish to allow the composition of arbi-
trary sources in the document generation process and allow
for easier changes in the domain because the system we en-
vision does not rely on a unified model.

The Darwin Information Typing Architecture (DITA) [8], is
an XML-based, architecture for authoring, producing, and

delivering technical information for industrial projects. A
commercial implementation is Arbortext1. Although it pro-
vides a solution for document generation, data has to con-
form to a certain structure, whereas our approach focuses
on unified data retrieval and composition without having to
change the system models. In this way we address the needs
of constantly changing heterogeneous domains like the web
of things. Furthermore the approach presented in this paper
allows reasoning on the data, thus bringing smartness to the
generated documents.

Model-driven documentation tools like EMFDoc2 can be
used to add documentation to software models. Each model
element in a referenced XMI file can be annotated with a
comment, which is automatically added as GenModel anno-
tation. In addition, EMFDoc computes the coverage of the
documentation and shows the results in the outline view.

In the quest for the web of things, researchers have al-
ready integrated semantic technologies within IoT applica-
tions [10]. By using ClickScript3 the users can customize
their applications to their liking. The document generation
system envisioned in this paper benefits from these advances
as more and more resources can be queried semantically out
of the box without the need for adapters.

In accordance to the vision of creating a mashable World
Wide Web of Things [7], a documentation generation system
that combines several data sources using semantic technolo-
gies seems a natural step towards a unified experience.

Web technologies have gained versatility in the last years.
Maintaining server side code and sending it to the client
as needed, adds great flexibility to standalone HTML5 web
pages. Incorporating existing template engines and semantic
web libraries is thus achievable using for example Node.js4

in combination with libraries such as Browserify5.

3. USE CASES
In order to ensure our solution maintains real world rele-
vance, we derived requirements from the challenges present
in the domains of configurable things and configurable In-
ternet of Things presented below.

3.1 Configurable Things
To illustrate the problem of creating documentation for re-
configurable things based on state of the art model driven
configuration technology, we look at a simple Bike config-
urator demo by Configit6. This configurator allows for the
definition of millions of bike variants and acts as representa-
tive for high variability industrial products we want to deal
with [13].

A product, the bike, requires several document types, each
focused on different aspects tailored to the specific variant
they describe (see Figure 2). The technical sheet for a bike

1http://www.ptc.com/product/arbortext
2DevBoost EMFDoc, http://reuseware.org/index.php/
3ClickScript, http://clickscript.ch
4Node.js, http://www.nodejs.org/
5Browserify, http://browserify.org/
6Bike Shop, http://demo.configit.com/BikeShop2/Default.aspx

…
…

Figure 2: From the online configurator to the differ-
ent variants of a bike and the documentation types
accompanying each of them.

usually contains the description of the individual parts of
the bike, one after the other. A component may have differ-
ent parameters or attributes that also need to have attached
explanations. A brochure on the other hand, may contain
text more suited for marketing purposes. The manual may
contain assembly or maintenance instructions alongside the
information from the aforementioned documents. Although
each of these documentation types describe the same prod-
uct, large parts of the contents may vary, while some are
reused. Handling the composition in an automated manner
allows the inclusion of content management systems that
can handle text administration in an organized manner.

While all parts and the structure should be included in the
documentation depending on the situation, mentioning non-
existent parts of a bike may confuse and decrease the user
experience of the product. Furthermore, a bike may be sold
in different countries with different preferences. In this case,
not only the language of the documentation varies, but also
the technical configuration, and the cultural background and
context of use.

Often small configuration changes, may entail differences in
structure that are known to the expert assembling the bike.
Depending on preferences, different frame parts might hold
the cables, breaks etc. . This way documentation shows its
importance when the usefulness of a thing is assessed by a
user. Users might find aspects that they do or do not like in
a certain model. Furthermore, documentation can aid the
domain expert in the discovery of inconsistencies. Quality
documentation is a good indicator for the usability of the
thing itself.

Given the requirements derived from this scenario and the
large variant space one can easily see that manual creation of
product specific documents is not feasible in such a situation.
Even if the number of variants is small, manually creating
documents for one such variant still remains an error-prone
and time intensive task. Therefore, in practical scenarios,
customers are usually provided with a generic documenta-
tion7.From the perspective of the user, generic documenta-
tion can be time consuming to read and may cause confusion

7The interconnected car Opel Adam is one of few customiz-
able products which ships with personalized documentation,
http://www.opel.com/microsite/adam/

because of inconsistencies with the product at hand, thus
hindering the comprehension of the system.

3.2 Configurable Internet of Things
While the bike shop example shows some basic problems
that we have to solve for the documentation of things, in an
Internet of Things we want to cover complex systems com-
prised of a variety of products. Rather than looking at a
monolithic reconfigurable thing, we are looking at mashups
of (preconfigured) things representing a downloadable appli-
cation. One of our target use cases is situated in the domain
of home automation [12].

In the mentioned use case, the openHAB8 framework is used
by the authors to facilitate the device interoperation. It is
an integrating middleware that provides device interconnec-
tivity and the possibility to specify behavioural rules across
a multitude of devices. A developer provides, via app store,
the logic in form of openHAB rule models and a template
describing the application. When writing the template we
supply an editor to the domain expert that can tap into the
code model and provide content assistance.

Document
Generation

Model
Augmentation

Instant Help
Contextual Documentation

Home
Automation
App Store

Device
Bindings

Text	

Store	

Text	

Store	

Template

Code	

Model	

User

Developer

Manufacturer

Figure 3: Home automation scenario where docu-
mentation is provided by developers and manufac-
turers alike, while the users receive only the relevant
parts.

An app download from the store provides templates and
augments the openHAB models (see Figure 3). The device
manufacturers can add textual descriptions of arbitrary de-
tail to a text store. The text store can provide the data as
answers to semantic queries. Furthermore, the current state
can be queried from the openHAB runtime models.

The different manufacturers may annotate things with tags
that the app creators can use in documentation templates.
E.g. using a thing as light sensor will trigger the inclusion
or linking of the text describing the light sensor function-
ality. Especially when being confronted with heterogeneous

8OpenHAB, http://www.openhab.org

components, as seen in Figure 4, the user is burdened with
making sense of it all. Adapted documentation can improve
the identification and composition of the things forming the
system and ease the task of the user.

Figure 4: Packaged devices as they are delivered
to and unpacked by customers after acquiring them
from different manufacturers.

As openHAB relies on EMF technology, the textual descrip-
tions of the model elements can be managed on the same
technological level using EMFDoc. This base documenta-
tion may then be uploaded to a text store to facilitate trans-
lations or variations for different documentation types.

Not only can the app developers provide documentation for
the users, but the openHAB developers themselves can pro-
vide documentation for the developers using the framework,
either in form of standalone documents or by providing in-
stant help, say as JavaDoc snippet or contextual help, while
developing their apps within the openHAB designer.

Like the Configit configurator the system is model based.
Device and rule management are based on the Eclipse Mod-
eling Framework (EMF). OpenHAB can interface with de-
vices via bindings to bridge the gap between proprietary
protocols and executes the model within its OSGi runtime,
thus integrating the smart devices on the technical level. We
wish to augment this integration by providing the user with
unified documentation adapted to his or her use case.

4. DESIGN AND IMPLEMENTATION
The first goal of our document generation architecture was
to create a reusable system that integrates with both use
cases mentioned and their underlying model driven devel-
opment schemes. Furthermore, we want to enable the use
of existing heterogeneous information to create documenta-
tion. As the documentation is a mashup of textual descrip-
tions linked to the underlying system model it is possible
to provide instant help documentation snippets to be used
in digital interface such as augmented reality or smartphone
and tablet based applications, as well as integration with
IDEs to provide development assistance.

The second goal is to integrate with a heterogeneous web-
based infrastructure. E.g. to handle internationalization
challenges and different use cases for product documenta-
tion, we want to be able to connect to text storage similar
to a content management systems and wikis. This allows
handling fragmented textual descriptions for components.

Text block inclusion in the documentation is filter based us-
ing meta-data tags added during the authoring of the texts.

Beyond the engineered product model, the information con-
tained in the product knowledge base is likely to impact
the contents of the documentation. The need for manual
document updates immediately bring the product and its
documentation out of sync. Furthermore, individual users
may find certain types of information more appropriate or
require a different detail level to suit their needs and quali-
fications.

4.1 Documentation Generation
Several components need to provide information to the gen-
erator, for the document generation to take place: the doc-
ument structure, the style information, the text blocks and
the concrete system variant for which the document is built.
According to the model these input resources are federated
and semantically linked to obtain the final document.

In the likely event of changes to underlying system describ-
ing information during the development or maintenance pro-
cess, all documents listening to these sources will be notified
and a re-rendering of the template takes place.

A typical software product has a knowledge base consisting
of several resources which we will further call source models.
These source models are the basis onto which the product is
created. These source models can be anything ranging from
UML Models or custom models and meta models to Excel
spreadsheets and property files containing product specific
information (see Figure 5).

Live Template

Product Layer

Adapter Layer

Live Document
Layer

Configuration Layer

Context	

Model	

Query	
 Module	

Engine	

Reasoner	

Document	
 Template	

Listener	

Queries

Configura<on	
 Wizard	

Base	

Template	
 Document Engineer

THINGS

Notifications

Figure 5: Document generation system architecture
overview including heterogeneous data sources.

To combine the data from the different source models, we
use semantic web technologies such as JSON-LD, OWL and
SPARQL, even allowing the integration of reasoning tech-
nologies. SPARQL endpoints for each type of source model

in the description of the product answer the queries sent
from the smart template. By separating the translation
of model data into a separate layer, we allow independent
changes or addition to the source models.

To handle the semantic context inside our web applications
after it has been queried, we use JSON-LD9. This entails
high flexibility in terms of programming support and com-
bined with HTML5, the possibility arises to incorporate
complex logic into standalone web pages (such as intelligent
help sites for product features). SPARQL’s [15] ability to
query semantic stores via REST endpoints and the built in
mechanism to filter searches make it a good option to query
bigger semantic stores.

The federated source models provide up-to-date informa-
tion if they are alive during the execution. This is the case
with the openHAB framework, where updates to the mod-
els change the execution environment. This is an especially
useful feature of the framework that allows truly live doc-
umentation to be generated, which reflects the state of the
system at the time of reading. The SPARQL endpoints for
the source models are declared in the product specific part
of the documentation, as they are a direct declaration of the
data sources the product is made of.

In addition to the use of existing models and federated in-
formation we create a context model. The context model is
currently created manually within the documentation com-
ponent and contains meta-data used to adapt the generated
documentation not only to the specific variant of the prod-
uct but also to the current user or other external context
information.

The federated knowledge contained in the source models is
valuable for helping the user create a better mental model.
Through integration it is possible for a documentation devel-
oper to create a single personalized narrative of the product.

4.2 The Model Bridge
While relying on existing components for most parts, we
are implementing a light-weight java-script document gen-
eration framework. Rendr10 allows both static and dynamic
text rendering on a server as well as in a web browser based
on a strict model-view-controller principle.

As described above, the model is made up solely by web end-
points that are combined based on a HATEOAS11 principle
using JSON-LD. In our authoring workflow we are currently
only supporting the linking of models in the web-browsers
but also plan on supporting link-discovery frameworks (like
LDIF12) as well as server-side reasoning (via OWL and/or
SPIN rules) employing user defined semantics.

The core of our specific architecture implementation com-
prises a model bridge for the application models inside the
eclipse framework. For this we are including a light-weight
web-server as Eclipse plugin that exposes the EMF models

9JSON for Linked Data, http://json-ld.org/
10Rendr, https://github.com/rendrjs
11Hypermedia as the Engine of Application State
12LDAP Data Interchange Format

as linked data. Our current implementation is based on the
EMFTriple13 and the Fuseki Webserver from the Apache
Jena Project14 incorporating a Pellet reasoner15. The doc-
umentation fragments we are currently handling inside of
drupal via its ARC216 based RDF Endpoint. Using this sim-
ple set of technologies we were able to implement a proof of
concept for both use cases. However, the set of components
provides a basis for more advanced use. This setup allows
the implementation of context-sensitive HTML5 help inside
the OpenHAB framework that acknowledges the usage con-
text of a thing inside a complex workflow based on a single
ID.

The architecture is further flexible enough to generate other
kinds of documentation. In order to generate documenta-
tion that allows for further manual editing, we are using
Pandoc17 to generate formats such as word documents.

Figure 6 shows some static standard documentation and its
generated counterpart in comparison. The documentation
on the right exclusively contains information blocks relevant
for a thing as light sensor (highlighted in red). Leaving out
unused features of multi-purpose devices greatly reduces the
size of the documentation making it more concise.

Figure 6: Comparison of standard (left) and gener-
ated documentation (right).

5. DISCUSSION
Other research shows that it is possible to generate nat-
ural language text directly from system models like UML
Diagrams, to provide non-technical users access to the con-
tained information [11, 4]. While these approaches do not
focus on generating documents, they can provide valuable
data sources for the document generation process described
in this paper and allow fully automatically document gener-
ation without human text authoring.

Explicitly managing the textual descriptions of the system
components allows external agencies to access the textual
data easily, in an organized manner to proof read or trans-
late it, providing implicit versioning support and consistency

13EMFTriple, https://github.com/ghillairet/emftriple
14Apache JENA, http://jena.apache.org
15Pellet, http://clarkparsia.com/pellet/
16Drupal ARC2 SPARQL, https://www.drupal.org
17Pandoc, http://johnmacfarlane.net/pandoc/

checks. This can also foster the collaboration among devel-
opers, marketers and other contributors, allowing a separa-
tion of concerns during the documentation development.

Documentation creation in enterprise environments requires
the adoption of documentation standards. Implementing
standards like the IEEE Software Documentation Standard
[1] requires tedious manual work, if no automated infras-
tructure exists. Additionally, techniques such as structured
writing can be more easily integrated into the documenta-
tion development cycle [9].

In our research and implementations we have only consid-
ered the generation systems as well as the end-user interface
to configuration and documentation while making assump-
tions about the authoring process. For a system to scale,
especially those parts still need to be addressed.

6. CONCLUSION
In this paper we presented a system concept for the gener-
ation of product specific documentation that is applicable
to physical and non-physical system families. By allowing a
data mashup with a unified semantic web querying interface
between the diverse source models a product may have, we
enable contextual documentation generation.

As the documentation is generated from the underlying sys-
tem models, it follows naturally that a future version will
allow for two way synchronisation enabling running software
modifications by altering presented documents. As a results,
user-to-system dialogue becomes possible.

When implementing feature requests, developers usually cre-
ate or modify parts that are visible to the customers. Pro-
viding instantaneously generated documentation adds yet
another feedback loop in the development process. This
feedback loop is not only meant for developers or technical
personell, but can be used by arbitrary stakeholders. Man-
agers, marketers and sales people can receive instant updates
when the code is committed to the central repository and
are able to provide valuable input to the development team,
preventing costly changes later in the product cycle.

But as with all new concepts and tools, real world usage may
vary. Nevertheless, having a higher quality documentation
that corresponds to what the customer can use effectively
is an added benefit worthwhile and relieves employees of
repetitive and error-prone tasks.

We believe that many applications can benefit from such
a system because it is accompanying rather than intrusive
with regard to the development process and provides a feed-
back on the state of the system after changes take place.

7. ACKNOWLEDGMENTS
This work was partially funded by the German Federal Min-
istry of Education and Research (BMBF) as part of the In-
staGuide project (grant number 01IS12051).

We wish to thank the colleagues at Siemens CT Austria for
their insights and support.

8. REFERENCES
[1] IEEE SA - 26514-2010 - IEEE Standard for Adoption

of ISO/IEC 26514:2008 Systems and Software
Engineering–Requirements for Designers and
Developers of User Documentation.

[2] S. Antifakos, F. Michahelles, and B. Schiele. Proactive
Instructions for Furniture Assembly. In Proceedings of
the 4th international conference on Ubiquitous
Computing, UbiComp ’02, London, UK, UK, 2002.
Springer-Verlag.

[3] C. Beckmann, S. Consolvo, and A. LaMarca. Some
Assembly Required: Supporting End-User Sensor
Installation in Domestic Ubiquitous Computing
Environments. In UbiComp 2004: Ubiquitous
Computing SE - 7, volume 3205 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2004.

[4] H. k. Burden and R. Heldal. Natural language
generation from class diagrams. In Proceedings of the
8th International Workshop on Model-Driven
Engineering, Verification and Validation - MoDeVVa,
page 1, New York, New York, USA, Oct. 2011. ACM
Press.

[5] D. Dhungana, R. Rabiser, P. Grünbacher, K. Lehner,
and C. Federspiel. DOPLER: an adaptable tool suite
for product line engineering. 11th International
Software Product Line Conference (SPLC 2007),
pages 10–14, 2007.

[6] D. Guinard, V. Trifa, F. Mattern, and E. Wilde. From
the Internet of Things to the Web of Things:
Resource-oriented Architecture and Best Practices. In
D. Uckelmann, M. Harrison, and F. Michahelles,
editors, Architecting the Internet of Things SE - 5,
pages 97–129. Springer Berlin Heidelberg, 2011.

[7] D. Guinard, V. M. Trifa, and E. Wilde. Architecting a
mashable open world wide web of things. ETH,
Department of Computer Science, 2009.

[8] N. Harrison. The Darwin Information Typing
Architecture (DITA): Applications for Globalization.
pages 115–121, 2005.

[9] R. E. Horn. Structured Writing as a Paradigm. 1998.

[10] S. Mayer and N. Inhelder. User-friendly configuration
of smart environments. Pervasive Computing . . . ,
pages 163–165, 2014.

[11] F. Meziane, N. Athanasakis, and S. Ananiadou.
Generating Natural Language specifications from
UML class diagrams. Requir. Eng., 13(1), Jan. 2008.

[12] A. Miclaus, T. Riedel, and M. Beigl. End-User
Installation of Heterogeneous Home Automation
Systems Using Pen and Paper Interfaces and
Dynamically Generated Documentation. pages 1–6.
The 4th International Conference on the Internet of
Things (IoT 2014), 2014.

[13] J. Mø ller, H. Andersen, and H. Hulgaard. Product
configuration over the internet. Proceedings of the 6th
INFORMS, 2001.

[14] P. Niels. Intelligente Augmented Reality Handbücher
Zeigen, wie’s geht - Werkerunterstützung für die
Fabrik der Zukunft, 2013.

[15] E. Prud’Hommeaux, A. Seaborne, and Others.
SPARQL query language for RDF. W3C
recommendation, 15, 2008.

